Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide

1Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA 2 Department of Physics, Arizona State University, Tempe, AZ, USA 3 Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA 4 Quantum Science and Engineering Center, George Mason University, Fairfax, VA, USA 5 Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland 6 Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA 7 Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA 8 Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, USA 9Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

[1]  Tay-Rong Chang,et al.  Quantum-limit Chern topological magnetism in TbMn6Sn6 , 2020, Nature.

[2]  J. Sinova,et al.  Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets , 2020, Science Advances.

[3]  W. Price,et al.  Photoelectron Spectroscopy , 2009 .

[4]  K. Schwarz,et al.  WIEN2k: An APW+lo program for calculating the properties of solids. , 2020, The Journal of chemical physics.

[5]  Н. Грейда,et al.  17 , 2019, Magical Realism for Non-Believers.

[6]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[7]  J. Mitchell,et al.  Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6 , 2018, Nature Communications.

[8]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[9]  Su-Yang Xu,et al.  Topological quantum properties of chiral crystals , 2016, Nature Materials.

[10]  Di Xiao,et al.  Large anomalous Hall effect in a half-Heusler antiferromagnet , 2016, Nature Physics.

[11]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[12]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[13]  K. Koepernik,et al.  Orbital textures and charge density waves in transition metal dichalcogenides , 2014, Nature Physics.

[14]  K. Rossnagel On the origin of charge-density waves in select layered transition-metal dichalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  L. Forró,et al.  From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.

[16]  Γιώργος Χ. Χιονίδης 21 , 1995, Between Two Shores.

[17]  S. Parkin,et al.  Magnetic structure of Co1/3NbS2 and Co1/3TaS2 , 1983 .

[18]  R. Friend,et al.  Electrical and magnetic properties of some first row transition metal intercalates of niobium disulphide , 1977 .

[19]  W. B. Clark,et al.  Structural and photoemission studies of some transition metal intercalates of NbS2 , 1976 .

[20]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[21]  R. Friend,et al.  3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties , 1980 .