Extensible 3D architecture for superconducting quantum computing

Using a multi-layered printed circuit board, we propose a 3D architecture suitable for packaging supercon- ducting chips, especially chips that contain two-dimensional qubit arrays. In our proposed architecture, the center strips of the buried coplanar waveguides protrude from the surface of a dielectric layer as contacts. Since the contacts extend beyond the surface of the dielectric layer, chips can simply be flip-chip packaged with on-chip receptacles clinging to the contacts. Using this scheme, we packaged a multi-qubit chip and per- formed single-qubit and two-qubit quantum gate operations. The results indicate that this 3D architecture provides a promising scheme for scalable quantum computing.

[1]  Franco Nori,et al.  Interqubit coupling mediated by a high-excitation-energy quantum object , 2007, 0709.0237.

[2]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[3]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[4]  R. J. Schoelkopf,et al.  Demonstration of superconducting micromachined cavities , 2015, 1509.01119.

[5]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[6]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.

[7]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[8]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[9]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[10]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[11]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[12]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[13]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[14]  John M. Martinis,et al.  Scalable in situ qubit calibration during repetitive error detection , 2016, 1603.03082.

[15]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[16]  L Frunzio,et al.  High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.

[17]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[18]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[19]  F. Nori,et al.  Generalized switchable coupling for superconducting qubits using double resonance , 2006, cond-mat/0605685.

[20]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[21]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[22]  John M. Martinis,et al.  Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.

[23]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[24]  Austin G. Fowler,et al.  Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket , 2016 .

[25]  E. Il'ichev,et al.  Broadband sample holder for microwave spectroscopy of superconducting qubits. , 2014, Review of Scientific Instruments.

[26]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[27]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[28]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[29]  Austin G. Fowler,et al.  Surface code with decoherence: An analysis of three superconducting architectures , 2012, 1210.5799.

[30]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[31]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[32]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[33]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[34]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[35]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[36]  J. Tsai,et al.  Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits , 2015 .

[37]  Erik Lucero,et al.  Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits , 2010, 1011.4982.

[38]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.