Chemistry of single-walled carbon nanotubes.

In this Account we highlight the experimental evidence in favor of our view that carbon nanotubes should be considered as a new macromolecular form of carbon with unique properties and with great potential for practical applications. We show that carbon nanotubes may take on properties that are normally associated with molecular species, such as solubility in organic solvents, solution-based chemical transformations, chromatography, and spectroscopy. It is already clear that the nascent field of nanotube chemistry will rival that of the fullerenes.

[1]  Ya‐Ping Sun,et al.  Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation , 2002 .

[2]  R. Haddon,et al.  Ester-functionalized soluble single-walled carbon nanotubes , 2002 .

[3]  Vahid Majidi,et al.  High resolution capillary electrophoresis of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[4]  Ya‐Ping Sun,et al.  Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes , 2002 .

[5]  M. Itkis,et al.  Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes , 2002 .

[6]  Francisco Pompeo,et al.  Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine , 2002 .

[7]  V. Basiuk,et al.  Interaction of Oxidized Single-Walled Carbon Nanotubes with Vaporous Aliphatic Amines , 2002 .

[8]  Stanislaus S. Wong,et al.  Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures , 2002 .

[9]  F. Papadimitrakopoulos,et al.  Length separation of Zwitterion-functionalized single wall carbon nanotubes by GPC. , 2002, Journal of the American Chemical Society.

[10]  M. Prato,et al.  Organic functionalization of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[11]  W. Pompe,et al.  Solid–liquid–solid growth mechanism of single-wall carbon nanotubes , 2002 .

[12]  R. Smalley,et al.  Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO , 2001 .

[13]  H. Kataura,et al.  Growth of single-walled carbon nanotubes from the condensed phase , 2001 .

[14]  Andreas Hirsch,et al.  Sidewall Functionalization of Carbon Nanotubes. , 2001, Angewandte Chemie.

[15]  J. Tour,et al.  Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds , 2001 .

[16]  M. Itkis,et al.  Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[17]  R. Smalley,et al.  Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. , 2001, Journal of the American Chemical Society.

[18]  M. Itkis,et al.  Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration , 2001 .

[19]  D. Carroll,et al.  Soluble Dendron-Functionalized Carbon Nanotubes: Preparation, Characterization, and Properties§,‖ , 2001 .

[20]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) , 2001 .

[21]  R. Smalley,et al.  Two-dimensional imaging of electronic wavefunctions in carbon nanotubes , 2001, Nature.

[22]  S. Shinkai,et al.  Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir−Blodgett Films , 2001 .

[23]  J. Salvetat,et al.  Hydrogenation of carbon nanotubes and graphite in liquid ammonia , 2001 .

[24]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[25]  M. Monthioux,et al.  Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation , 2001 .

[26]  R. Smalley,et al.  Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. , 2001, Journal of the American Chemical Society.

[27]  Masako Yudasaka,et al.  A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication , 2001 .

[28]  Dong Jae Bae,et al.  High-Yield Purification Process of Singlewalled Carbon Nanotubes , 2001 .

[29]  H. Kataura,et al.  Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance , 2001 .

[30]  D. Schuster,et al.  High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. , 2001, Journal of the American Chemical Society.

[31]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[32]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[33]  C Durkan,et al.  Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly , 2001, Science.

[34]  D. Colbert,et al.  Dissolution of Full-Length Single-Walled Carbon Nanotubes , 2001 .

[35]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[36]  James M. Tour,et al.  Dissolution of small diameter single-wall carbon nanotubes in organic solvents? , 2001 .

[37]  H. Kataura,et al.  Time period for the growth of single-wall carbon nanotubes in the laser ablation process: evidence from gas dynamic studies and time resolved imaging , 2000 .

[38]  Zhonghua Yu,et al.  Reversible Oxidation Effect in Raman Scattering from Metallic Single-Wall Carbon Nanotubes , 2000 .

[39]  Rodney S. Ruoff,et al.  Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .

[40]  R. Hauge,et al.  Gas‐Phase Purification of Single‐Wall Carbon Nanotubes. , 2000 .

[41]  C. Dekker,et al.  Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes , 2000 .

[42]  Richard E. Smalley,et al.  Surface defect site density on single walled carbon nanotubes by titration , 2000 .

[43]  Jason E. Riggs,et al.  Strong Luminescence of Solubilized Carbon Nanotubes , 2000 .

[44]  P. Bernier,et al.  A new purification method for single-wall carbon nanotubes (SWNTs) , 2000 .

[45]  Hiromichi Kataura,et al.  Diameter control of single-walled carbon nanotubes , 2000 .

[46]  Nobutsugu Minami,et al.  Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy , 1999 .

[47]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[48]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[49]  A. Ding,et al.  Formation mechanism of single-wall carbon nanotubes on liquid-metal particles , 1999 .

[50]  Andrew G. Rinzler,et al.  Far-Infrared gaps in single-wall carbon nanotubes , 1999 .

[51]  W. Pompe,et al.  Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy , 1999 .

[52]  Kenneth A. Smith,et al.  Reversible sidewall functionalization of buckytubes , 1999 .

[53]  M. Itkis,et al.  Dissolution of Single‐Walled Carbon Nanotubes , 1999 .

[54]  J. Bridson,et al.  1,7‐Dioxa[7](2,7)pyrenophane: The Pyrene Moiety Is More Bent than That of C70 , 1999 .

[55]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[56]  Patrick Bernier,et al.  Tuning and monitoring the electronic structure of carbon nanotubes , 1999 .

[57]  T. Ichihashi,et al.  Growth Dynamics of Single-Wall Carbon Nanotubes Synthesized by CO2 Laser Vaporization , 1999 .

[58]  Robert H. Hauge,et al.  Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents , 1999 .

[59]  D. Srivastava,et al.  Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry , 1999 .

[60]  B. Tang,et al.  Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes† , 1999 .

[61]  R. Haddon,et al.  Fulleroid Addition Regiochemistry Is Driven by π-Orbital Misalignment , 1999 .

[62]  Erik Dujardin,et al.  WETTING OF SINGLE SHELL CARBON NANOTUBES , 1998 .

[63]  A. Rinzler,et al.  Fluorination of single-wall carbon nanotubes , 1998 .

[64]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[65]  A. M. Rao,et al.  Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material , 1998 .

[66]  Thomas W. Ebbesen,et al.  Cones and Tubes: Geometry in the Chemistry of Carbon , 1998 .

[67]  Y. Ando,et al.  Purification and magnetic properties of carbon nanotubes , 1998 .

[68]  Otto Zhou,et al.  Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid , 1998 .

[69]  Erik Dujardin,et al.  Purification of Single‐Shell Nanotubes , 1998 .

[70]  P. Eklund,et al.  Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes , 1998 .

[71]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[72]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[73]  Lu,et al.  Fullerene pipes , 1998, Science.

[74]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[75]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[76]  H. J. Kim,et al.  Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br , 1997, Nature.

[77]  R. Smalley,et al.  C240: THE MOST CHEMICALLY INERT FULLERENE? , 1997 .

[78]  Y. Saito,et al.  PURIFICATION PROCEDURE FOR SINGLE-WALLED NANOTUBES , 1997 .

[79]  R. C. Haddon,et al.  C60: Sphere or Polyhedron? , 1997 .

[80]  C. Kane,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1996, cond-mat/9608146.

[81]  L. T. Scott,et al.  Synthesis and Characterization of a C36H12 Fullerene Subunit , 1996 .

[82]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[83]  A. Sygula,et al.  Buckybowls: Polynuclear Aromatic Hydrocarbons Related to the Buckminsterfullerene Surface , 1996 .

[84]  R. Haddon,et al.  Electronic structure of the fulleroids: Homoconjugation in bridged C60 derivatives , 1996 .

[85]  T. Ebbesen,et al.  Decoration of carbon nanotubes , 1996 .

[86]  F. Vögtle,et al.  C61Br2: a new synthesis of dibromomethanofullerene and mass spectrometric evidence of the carbon allotropes C121 and C122 , 1996 .

[87]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[88]  Katsumi Tanigaki,et al.  Opening and purification of carbon nanotubes in high yields , 1995 .

[89]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[90]  Roger Taylor,et al.  The chemistry of fullerenes , 1995, Nature.

[91]  M. Ohashi,et al.  C61Cl2. Synthesis and characterization of dichlorocarbene adducts of C60 , 1993 .

[92]  R C Haddon,et al.  Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules , 1993, Science.

[93]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[94]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[95]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[96]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[97]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[98]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[99]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[100]  R. C. Haddon,et al.  Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? , 1990 .

[101]  Kenneth S. Suslick,et al.  The Chemical Effects of Ultrasound , 1989 .

[102]  Robert C. Haddon,et al.  .pi.-Electrons in three dimensiona , 1988 .

[103]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[104]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[105]  R. Haddon,et al.  Perchloro-7H-cycloprop(a)acenaphthylene and the Perchlorophenalenyl System. , 1987 .

[106]  R. C. Haddon,et al.  Rehybridization and π-Orbital Overlap in Nonplanar Conjugated Organic Molecules: π-Orbital Axis Vector (POAV) Analysis and Three-Dimensional Hückel MO (3D-HMO) Theory. , 1987 .

[107]  Louis E. Brus,et al.  Rehybridization and π-orbital alignment: the key to the existence of spheroidal carbon clusters , 1986 .

[108]  R. Haddon Hybridization and the orientation and alignment of .pi.-orbitals in nonplanar conjugated organic molecules: .pi.-orbital axis vector analysis (POAV2) , 1986 .

[109]  Robert C. Haddon,et al.  Electronic structure and bonding in icosahedral C60 , 1986 .

[110]  D. Seyferth Phenyl(trihalomethyl)mercury compounds. Exceptionally versatile dihalocarbene precursors , 1972 .