Hierarchical quantum-information splitting

Abstract We present a scheme for asymmetric quantum-information splitting, where a sender distributes asymmetrically a quantum secret (quantum state) to distant partners in a network. The asymmetric distribution leads to that the partners have different powers to recover the sender’s secret. In other words, their authorities for getting the secret are hierarchized. In the scheme, the partners do not need to make any nonlocal operation. The scheme can also be modified to implement threshold-controlled teleportation.

[1]  Avinatan Hassidim,et al.  Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[3]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.

[4]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[5]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[6]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[7]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[8]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[9]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[10]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[11]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[12]  C. H. Oh,et al.  Quantum nonlocality of four-qubit entangled states , 2006, quant-ph/0611172.

[13]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[16]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[17]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[18]  L. Kuang,et al.  Production of genuine entangled states of four atomic qubits , 2009, 0903.0468.

[19]  Chi-Yee Cheung,et al.  Minimal classical communication and measurement complexity for quantum information splitting , 2008, 0812.4214.

[20]  Shou Zhang,et al.  Linear optical generation of multipartite entanglement with conventional photon detectors , 2009 .

[21]  P. Panigrahi,et al.  Quantum-information splitting using multipartite cluster states , 2008, 0802.0781.

[22]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[23]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[24]  Mikio Nakahara,et al.  Economical (k,m) -threshold controlled quantum teleportation , 2009, 0901.2674.

[25]  Xin-Wen Wang,et al.  Dense coding and teleportation with one-dimensional cluster states , 2007 .

[26]  Li Dong,et al.  Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping , 2009 .

[27]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[28]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[29]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[30]  Shi-Biao Zheng Splitting quantum information via W states , 2006 .

[31]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[32]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[33]  Xin-Wen Wang,et al.  Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics , 2009 .

[34]  Barry C. Sanders,et al.  Continuous-variable quantum-state sharing via quantum disentanglement , 2004, quant-ph/0411191.

[35]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[36]  G. Tóth,et al.  Practical methods for witnessing genuine multi-qubit entanglement in the vicinity of symmetric states , 2009, 0903.3910.

[37]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[38]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[39]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[40]  Mitsugu Iwamoto,et al.  Quantum secret sharing schemes and reversibility of quantum operations , 2005 .

[41]  Xin-Wen Wang,et al.  Controlled teleportation against uncooperation of part of supervisors , 2009, Quantum Inf. Process..