ANN for prognosis of abdominal pain in childhood : use of fuzzy modelling for convergence estimation

This paper focuses in two parallel objectives. First it aims in presenting a series of Artificial Neural Network models that are capable of performing prognosis of abdominal pain in childhood. Clinical medical data records have been gathered and used towards this direction. Its second target is the presentation and application of an innovative fuzzy algebraic model capable of evaluating Artificial Neural Networks’ performance [1]. This model offers a flexible approach that uses fuzzy numbers, fuzzy sets and various fuzzy intensification and dilution techniques to perform assessment of neural models under different perspectives. It also produces partial and overall evaluation indices. The produced ANN models have proven to perform the classification with significant success in the testing phase with first time seen data.

[1]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[2]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[5]  Milan Zeleny,et al.  Uncertain prospects ranking and portfolio analysis under the conditions of partial information , 1980 .

[6]  H. Mori,et al.  Analytic study of chaos of the tent map: Band structures, power spectra, and critical behaviors , 1983 .

[7]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[8]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[9]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[10]  Lawrence Davis,et al.  Mapping Classifier Systems Into Neural Networks , 1988, NIPS.

[11]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[12]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[13]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[14]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[15]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[16]  Norman H. Packard,et al.  A Genetic Learning Algorithm for the Analysis of Complex Data , 1990, Complex Syst..

[17]  D. Corkill Blackboard Systems , 1991 .

[18]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[19]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[20]  Edwina L. Rissland,et al.  CABARET: Rule Interpretation in a Hybrid Architecture , 1991, Int. J. Man Mach. Stud..

[21]  Francesco Palmieri,et al.  Optimal filtering algorithms for fast learning in feedforward neural networks , 1992, Neural Networks.

[22]  Stefan Bornholdt,et al.  General asymmetric neural networks and structure design by genetic algorithms: a learning rule for temporal patterns , 1992, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[23]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[24]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[25]  Sushil J. Louis,et al.  Case-based reasoning assisted explanation of genetic algorithm results , 1993, J. Exp. Theor. Artif. Intell..

[26]  Stephen I. Gallant,et al.  Neural network learning and expert systems , 1993 .

[27]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[28]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[29]  Bart L. M. Happel,et al.  Design and evolution of modular neural network architectures , 1994, Neural Networks.

[30]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[31]  Larry R. Medsker,et al.  Hybrid Intelligent Systems , 1995, Springer US.

[32]  David J. Montana,et al.  Strongly Typed Genetic Programming , 1995, Evolutionary Computation.

[33]  Gennady Agre,et al.  KBS Maintenance as Learning Two-Tiered Domain Representation , 1995, ICCBR.

[34]  Stephen A. Billings,et al.  Radial basis function network configuration using genetic algorithms , 1995, Neural Networks.

[35]  Paul S. Rosenbloom,et al.  Improving Accuracy by Combining Rule-Based and Case-Based Reasoning , 1996, Artif. Intell..

[36]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[37]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[38]  Vassilis Moustakis,et al.  Deep assessment of machine learning techniques using patient treatment in acute abdominal pain in children , 1996, Artif. Intell. Medicine.

[39]  Steve Rogers,et al.  Adaptive Filter Theory , 1996 .

[40]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[41]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[42]  Pedro Larrañaga,et al.  Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data , 1997, Pattern Recognit. Lett..

[43]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[44]  Spiridon D. Likothanassis,et al.  Optimizing The Structure Of Neural NetworksUsing Evolution Techniques , 1997 .

[45]  P. Anninos,et al.  Spatiotemporal stationarity of epileptic focal activity evaluated by analyzing magnetoencephalographic (MEG) data and the theoretical implications. , 1997, Panminerva medica.

[46]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[47]  Efstratios F. Georgopoulos,et al.  Currency Forecasting Using Recurrent RBF Networks Optimized by Genetic Algorithms , 1998 .

[48]  Efstratios F. Georgopoulos,et al.  An Evolutionary Method for System Structure Identification Using Neural Networks , 1998, NC.

[49]  Spiridon D. Likothanassis,et al.  Testing Currency Predictability Using An Evolutionary Neural Network Model , 1998 .

[50]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[51]  Robert Callan,et al.  The essence of neural networks , 1998 .

[52]  Nick Cercone,et al.  Rule-Induction and Case-Based Reasoning: Hybrid Architectures Appear Advantageous , 1999, IEEE Trans. Knowl. Data Eng..

[53]  X. Yao Evolving Artificial Neural Networks , 1999 .

[54]  David C. Hogg,et al.  Learning Behaviour Models of Human Activities , 1999, BMVC.

[55]  Ian D. Watson,et al.  Case-based reasoning is a methodology not a technology , 1999, Knowl. Based Syst..

[56]  Matthew Brand,et al.  Pattern discovery via entropy minimization , 1999, AISTATS.

[57]  Enric Plaza,et al.  Knowledge and Experience Reuse Through Communication Among Competent (Peer) Agents , 1999, Int. J. Softw. Eng. Knowl. Eng..

[58]  Efstratios F. Georgopoulos,et al.  Forecasting the MagnetoEncephaloGram (MEG) of Epileptic Patients Using Genetically Optimized Neural Networks , 1999, GECCO.

[59]  Staffan Larsson,et al.  Information state and dialogue management in the TRINDI dialogue move engine toolkit , 2000, Natural Language Engineering.

[60]  Toby Walsh,et al.  Automatic Identification of Mathematical Concepts , 2000, ICML.

[61]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[62]  Ioannis Hatzilygeroudis,et al.  Neurules: Improving the Performance of Symbolic Rules , 2000, Int. J. Artif. Intell. Tools.

[63]  Tony Mileman,et al.  Maintenance of a Case-Base for the Retrieval of Rotationally Symmetric Shapes for the Design of Metal Castings , 2000, EWCBR.

[64]  Terrence Fong,et al.  Collaboration, Dialogue, and Human-Robot Interaction , 2001 .

[65]  Dimitrios Kalles,et al.  Breeding Decision Trees Using Evolutionary Techniques , 2001, ICML.

[66]  Ioannis Hatzilygeroudis,et al.  An Efficient Hybrid Rule Based Inference Engine with Explanation Capability , 2001, FLAIRS Conference.

[67]  Ioannis Hatzilygeroudis,et al.  Constructing Modular Hybrid Rule Bases for Expert Systems , 2001, Int. J. Artif. Intell. Tools.

[68]  Phillip Burrell,et al.  Case-Based Reasoning System and Artificial Neural Networks: A Review , 2001, Neural Computing & Applications.

[69]  Dimitrios K. Lymberopoulos,et al.  A new concept toward computer-aided medical diagnosis - a prototype implementation addressing pulmonary diseases , 2001, IEEE Transactions on Information Technology in Biomedicine.

[70]  David B. Leake,et al.  When Two Case Bases Are Better than One: Exploiting Multiple Case Bases , 2001, ICCBR.

[71]  Jeffrey Mark Siskind,et al.  Grounding the Lexical Semantics of Verbs in Visual Perception using Force Dynamics and Event Logic , 1999, J. Artif. Intell. Res..

[72]  Brian Knight,et al.  A blackboard architecture for a hybrid CBR system for scientific software , 2001 .

[73]  Sung-Kwun Oh,et al.  Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling , 2002, IEEE Trans. Fuzzy Syst..

[74]  Mal-Rey Lee,et al.  An Exception Handling of Rule-Based Reasoning Using Case-Based Reasoning , 2002, J. Intell. Robotic Syst..

[75]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[76]  Riccardo Bellazzi,et al.  Supporting decisions in medical applications: the knowledge management perspective , 2002, Int. J. Medical Informatics.

[77]  David B. Leake,et al.  Managing Multiple Case Bases: Dimensions and Issues , 2002, FLAIRS.

[78]  Efstratios F. Georgopoulos,et al.  Exchange-Rates Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks , 2002 .

[79]  Ioannis Hatzilygeroudis,et al.  Integrating Hybrid Rule-Based with Case-Based Reasoning , 2002, ECCBR.

[80]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[81]  Panayiotis E. Pintelas,et al.  A survey on student dropout rates and dropout causes concerning the students in the Course of Informatics of the Hellenic Open University , 2002, Comput. Educ..

[82]  David B. Leake,et al.  Automatically Selecting Strategies for Multi-Case-Base Reasoning , 2002, ECCBR.

[83]  Jiann-Shing Shieh,et al.  The Intelligent Model of a Patient Using Artificial Neural Networks for Inhalational Anaesthesia , 2002 .

[84]  Santiago Ontañón,et al.  A bartering approach to improve multiagent learning , 2002, AAMAS '02.

[85]  Grigorios N. Beligiannis,et al.  Evolutionary self-adaptive multimodel prediction algorithms of the fetal magnetocardiogram , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[86]  Shalom Lappin,et al.  Current and New Directions in Discourse and Dialogue , 2003 .

[87]  조남욱 전자/제조업의 Collaboration 전략 , 2003 .

[88]  Oh Byung Kwon,et al.  Meta web service: building web-based open decision support system based on web services , 2003, Expert Syst. Appl..

[89]  Abdul V. Roudsari,et al.  Integrating model-based decision support in a multi-modal reasoning system for managing type 1 diabetic patients , 2003, Artif. Intell. Medicine.

[90]  Antonis C. Kakas,et al.  Argumentation based decision making for autonomous agents , 2003, AAMAS '03.

[91]  David Traum,et al.  The Information State Approach to Dialogue Management , 2003 .

[92]  Ren-Jye Dzeng,et al.  Critiquing contractors' scheduling by integrating rule-based and case-based reasoning , 2004 .

[93]  Minyong Kim,et al.  MyMessage: case-based reasoning and multicriteria decision making techniques for intelligent context-aware message filtering , 2004, Expert Syst. Appl..

[94]  Juan M. Corchado,et al.  FSfRT: Forecasting System for Red Tides , 2004, Applied Intelligence.

[95]  Andrea Lockerd Thomaz,et al.  Tutelage and Collaboration for Humanoid Robots , 2004, Int. J. Humanoid Robotics.

[96]  Miquel Sànchez-Marrè,et al.  OntoWEDSS: augmenting environmental decision-support systems with ontologies , 2004, Environ. Model. Softw..

[97]  Simon C. K. Shiu,et al.  Case-Based Reasoning: Concepts, Features and Soft Computing , 2004, Applied Intelligence.

[98]  Ioannis Hatzilygeroudis,et al.  Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems , 2004, Expert Syst. Appl..

[99]  Michael White,et al.  Efficient Realization of Coordinate Structures in Combinatory Categorial Grammar , 2006 .

[100]  David B. Leake,et al.  Case dispatching versus case-base merging: when MCBR matters , 2004, Int. J. Artif. Intell. Tools.

[101]  Atef Z. Ghalwash,et al.  A Recency Inference Engine for Connectionist Knowledge Bases , 1998, Applied Intelligence.

[102]  G. Beligiannis,et al.  A generic applied evolutionary hybrid technique , 2004, IEEE Signal Processing Magazine.

[103]  Sotiris B. Kotsiantis,et al.  PREDICTING STUDENTS' PERFORMANCE IN DISTANCE LEARNING USING MACHINE LEARNING TECHNIQUES , 2004, Appl. Artif. Intell..

[104]  Deb Roy,et al.  Mental imagery for a conversational robot , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[105]  Michi Henning,et al.  A new approach to object-oriented middleware , 2004, IEEE Internet Computing.

[106]  Kyoung-jae Kim,et al.  Toward Global Optimization of Case-Based Reasoning Systems for Financial Forecasting , 2004, Applied Intelligence.

[107]  Earl Cox,et al.  Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration , 2005 .

[108]  Anita Burgun-Parenthoine,et al.  Modelling a decision-support system for oncology using rule-based and case-based reasoning methodologies , 2005, Int. J. Medical Informatics.

[109]  Haleh Vafaie,et al.  CORMS AI: Decision Support System for Monitoring US Maritime Environment , 2005, AAAI.

[110]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[111]  Anthony G. Cohn,et al.  Protocols from perceptual observations , 2005, Artif. Intell..

[112]  Philippe Leray,et al.  BAYESIAN NETWORK STRUCTURAL LEARNING AND INCOMPLETE DATA , 2005 .

[113]  Vesna Ranković,et al.  Control of industrial robot using neural network compensator , 2005 .

[114]  Lazaros S. Iliadis,et al.  Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study , 2005 .

[115]  Raquel Hervás,et al.  Story plot generation based on CBR , 2004, Knowl. Based Syst..

[116]  Sushil J. Louis,et al.  Playing to learn: case-injected genetic algorithms for learning to play computer games , 2005, IEEE Transactions on Evolutionary Computation.

[117]  Lazaros S. Iliadis,et al.  A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation , 2005, Environ. Model. Softw..

[118]  Carlos A. Coello Coello,et al.  Extraction and reuse of design patterns from genetic algorithms using case-based reasoning , 2005, Soft Comput..

[119]  Pei-Chann Chang,et al.  A hybrid system by evolving case-based reasoning with genetic algorithm in wholesaler's returning book forecasting , 2006, Decis. Support Syst..

[120]  Rolf P. Würtz,et al.  Feature-Driven Emergence of Model Graphs for Object Recognition and Categorization , 2006, Applied Pattern Recognition.

[121]  Estela Bicho,et al.  Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning , 2006, Robotics Auton. Syst..

[122]  W I L L I A M C H E E T H A M 1, S I M O N S H I U,et al.  Soft case-based reasoning , 2006 .

[123]  Bernhard Sendhoff,et al.  Generalization Improvement in Multi-Objective Learning , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[124]  A. Mukovskiy,et al.  A dynamic model for action understanding and goal-directed imitation , 2006, Brain Research.

[125]  Thanasis Hadzilacos,et al.  On Small Data Sets Revealing Big Differences , 2006, SETN.

[126]  Thanasis Hadzilacos,et al.  On the Software Engineering Aspects of Educational Intelligence , 2006, KES.

[127]  Pei-Chann Chang,et al.  A case-injected genetic algorithm for single machine scheduling problems with release time , 2006 .

[128]  Estela Bicho,et al.  The dynamic neural field approach to cognitive robotics , 2006, Journal of neural engineering.

[129]  H. Bekkering,et al.  Joint action: bodies and minds moving together , 2006, Trends in Cognitive Sciences.

[130]  Dimitrios Kalles,et al.  Using Genetic Algorithms and Decision Trees for a posteriori Analysis and Evaluation of Tutoring Practices based on Student Failure Models , 2006, AIAI.

[131]  Walmir M. Caminhas,et al.  Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm , 2006, Neural Computing and Applications.

[132]  Giorgio Metta,et al.  YARP: Yet Another Robot Platform , 2006 .

[133]  Dimitrios Kalles,et al.  ANALYZING STUDENT PERFORMANCE IN DISTANCE LEARNING WITH GENETIC ALGORITHMS AND DECISION TREES , 2006, Appl. Artif. Intell..

[134]  Yeng-Horng Perng,et al.  Decision support for housing customization: A hybrid approach using case-based reasoning and genetic algorithm , 2006, Expert Syst. Appl..

[135]  Alexander H. Waibel,et al.  Enabling Multimodal Human–Robot Interaction for the Karlsruhe Humanoid Robot , 2007, IEEE Transactions on Robotics.

[136]  W. Erlhagen,et al.  On the development of intention understanding for joint action tasks , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[137]  J. Gregory Trafton,et al.  Spatial Representation and Reasoning for Human-Robot Collaboration , 2007, AAAI.

[138]  Alois Knoll,et al.  Integrating Language, Vision and Action for Human Robot Dialog Systems , 2007, HCI.

[139]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[140]  Lazaros S. Iliadis An intelligent Artificial Neural Network evaluation system using Fuzzy Set Hedges: Application in wood industry , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[141]  Bernd Michaelis,et al.  Colour class identification of tracers using artificial neural networks , 2007 .

[142]  Peter Wriggers,et al.  Intelligent support of engineering analysis using ontology and case-based reasoning , 2007, Eng. Appl. Artif. Intell..

[143]  Augusto Montisci,et al.  Dynamic Neural Networks for Prediction of Disruptions in Tokamaks , 2007 .

[144]  Ioannis Hatzilygeroudis,et al.  Categorizing approaches combining rule‐based and case‐based reasoning , 2007, Expert Syst. J. Knowl. Eng..

[145]  Andrew Bennett,et al.  Learning Sets of Sub-Models for Spatio-Temporal Prediction , 2007, SGAI Conf..

[146]  Marc Hanheide,et al.  Human-Oriented Interaction With an Anthropomorphic Robot , 2007, IEEE Transactions on Robotics.

[147]  Petr Hájek,et al.  Municipal Creditworthiness Modelling by Clustering Methods , 2007 .

[148]  Wolfram Burgard,et al.  An Integrated Robotic System for Spatial Understanding and Situated Interaction in Indoor Environments , 2007, AAAI.

[149]  Nikolaos I. Spanoudakis,et al.  A Tool for Portfolio Generation Using an Argumentation Based Decision Making Framework , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[150]  Adam Adamopoulos,et al.  Abdominal Pain Estimation in Childhood based on Artificial Neural Network Classification , 2007 .

[151]  Jack L. Treynor,et al.  MUTUAL FUND PERFORMANCE* , 2007 .

[152]  Mary Ellen Foster Roles of a Talking Head in a Cooperative Human-Robot Dialogue System , 2007, IVA.

[153]  Alois Knoll,et al.  Integrating Multimodal Cues Using Grammar Based Models , 2007, HCI.

[154]  A. J. Dentsoras,et al.  Case-DeSC: A system for case-based design with soft computing techniques , 2007, Expert Syst. Appl..

[155]  Cynthia Breazeal,et al.  Effects of anticipatory action on human-robot teamwork: Efficiency, fluency, and perception of team , 2007, 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[156]  W. Pedrycz Structural Interpolation and Approximation with Fuzzy Relations: A Study in Knowledge Reuse , 2007 .

[157]  Aaron Sloman,et al.  Towards an Integrated Robot with Multiple Cognitive Functions , 2007, AAAI.

[158]  Christopher W. Geib,et al.  Representation and Integration: Combining Robot Control, High-Level Planning, and Action Learning , 2008 .

[159]  Mary Ellen Foster,et al.  Following Assembly Plans in Cooperative, Task-Based Human-Robot Dialogue , 2008 .

[160]  Jesus Boticario,et al.  samap: An user-oriented adaptive system for planning tourist visits , 2008, Expert Syst. Appl..

[161]  Alois Knoll,et al.  The roles of haptic-ostensive referring expressions in cooperative, task-based human-robot dialogue , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[162]  Stefanie Tellex,et al.  Object schemas for responsive robotic language use , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[163]  Alois Knoll,et al.  Using a Na"ive Bayes Classifier based on K-Nearest Neighbors with Distance Weighting for Static Hand-Gesture Recognition in a Human-Robot Dialog System , 2008 .

[164]  L. Iliadis,et al.  Artificial Neural Networks Equivalent to Fuzzy Algebra T‐Norm Conjunction Operators , 2008 .

[165]  Alois Knoll,et al.  A Wait-free Realtime System for Optimal Distribution of Vision Tasks on Multicore Architectures , 2008, ICINCO-RA.

[166]  Alois Knoll,et al.  MultiML: a general purpose representation language for multimodal human utterances , 2008, ICMI '08.

[167]  Heng-Li Yang,et al.  Two stages of case-based reasoning - Integrating genetic algorithm with data mining mechanism , 2008, Expert Syst. Appl..

[168]  Fong-Ching Yuan,et al.  A hierarchical design of case-based reasoning in the balanced scorecard application , 2009, Expert Syst. Appl..

[169]  Chaochang Chiu,et al.  Price information evaluation and prediction for broiler using adapted case-based reasoning approach , 2009, Expert Syst. Appl..

[170]  Kyoung-jae Kim,et al.  Global optimization of case-based reasoning for breast cytology diagnosis , 2009, Expert Syst. Appl..