Homogeneous wavelets and framelets with the refinable structure

Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this paper, we provide a comprehensive study on connecting homogeneous wavelets and framelets to nonhomogeneous ones with the refinable structure. This allows us to understand better the structure of homogeneous wavelets and framelets as well as their connections to the refinable structure and multiresolution analysis.

[1]  B. Han,et al.  SYMMETRIC MRA TIGHT WAVELET FRAMES WITH THREE GENERATORS AND HIGH VANISHING MOMENTS , 2004 .

[2]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[3]  B. Han On Dual Wavelet Tight Frames , 1997 .

[4]  N. Atreas,et al.  1 EXTENSION PRINCIPLES FOR DUAL MULTIWAVELET FRAMES OF L 2 ( R s ) CONSTRUCTED FROM MULTIREFINABLE GENERATORS , 2015 .

[5]  B. Han Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.

[6]  B. Han Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters , 2013 .

[7]  I. Daubechies,et al.  The Canonical Dual Frame of a Wavelet Frame , 2002 .

[8]  B. Han,et al.  Smooth affine shear tight frames with MRA structure , 2013, 1308.6205.

[9]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[10]  B. Han The Projection Method for Multidimensional Framelet and Wavelet Analysis , 2014 .

[11]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[12]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[13]  Jae Kun Lim,et al.  Characterizations of Biorthogonal Wavelets Which Are Associated with Biorthogonal Multiresolution Analyses , 2001 .

[14]  Marcin Bownik Riesz wavelets and generalized multiresolution analyses , 2003 .

[15]  Some applications of projection operators in wavelets , 1995 .

[16]  Pierre Gilles Lemarié-Rieusset Sur l'existence des analyses multi-résolutions en théorie des ondelettes , 1992 .

[17]  Bin Han,et al.  Algorithm for constructing symmetric dual framelet filter banks , 2014, Math. Comput..

[18]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[19]  Kellen Petersen August Real Analysis , 2009 .

[20]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[23]  Zhenpeng Zhao,et al.  Tensor Product Complex Tight Framelets with Increasing Directionality , 2013, SIAM J. Imaging Sci..

[24]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[25]  David R. Larson,et al.  Riesz wavelets and multiresolution structures , 2001, SPIE Optics + Photonics.

[26]  R. A. Zalik Riesz Bases and Multiresolution Analyses , 1999 .

[27]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[28]  Marcin Bownik A Characterization of Affine Dual Frames in L2(Rn) , 2000 .

[29]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[30]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[31]  B. Han Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.

[32]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[33]  Bin Han,et al.  Multiwavelet Frames from Refinable Function Vectors , 2003, Adv. Comput. Math..

[34]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[35]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[36]  Manos Papadakis,et al.  Extension Principles for Dual Multiwavelet Frames of $$L_2(\mathbb {R}^s)$$L2(Rs) constructed from Multirefinable Generators , 2016 .

[37]  L. Baggett,et al.  Construction of Parseval wavelets from redundant filter systems , 2004, math/0405301.

[38]  Nikolaos Atreas,et al.  Affine dual frames and Extension Principles , 2014 .

[39]  L. Baggett,et al.  Generalized filters, the low-pass condition, and connections to multiresolution analyses , 2009 .

[40]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[41]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[42]  P. Auscher Solution of two problems on wavelets , 1995 .

[43]  R. Long,et al.  Biorthogonal Wavelet Bases on Rd , 1995 .

[44]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .