Survey on studies about model uncertainties in small body explorations

Currently, the explorations of small solar system bodies (asteroids and comets) have become more and more popular. Due to the limited measurement capability and irregular shape and diverse spin status of the small body, uncertainties on the parameters of the system and s/c executions are a practical and troublesome problem for mission design and operations. The sample-based Monte Carlo simulation is primarily used to propagate and analyze the effects of these uncertainties on the surrounding orbital motion. However, it is generally time-consuming because of large samples required by the highly nonlinear dynamics. New methods need to be applied for balancing computational efficiency and accuracy. To motivate this research area and facilitate the mission design process, this review firstly discusses the dynamical models and the different methods of modeling the mostly related gravitational and non-gravitational forces. Then the main uncertainties in these force models are classified and analyzed, including approaching, orbiting and landing. Then the linear and nonlinear uncertainty propagation methods are described, together with their advantages and drawbacks. Typical mission examples and the associated uncertainty analysis, in terms of methods and outcomes, are summarized. Future research efforts are emphasized in terms of complete modelling, new mission scenarios, and application of (semi-) analytical methods in small body explorations.

[1]  P. Farinella,et al.  Non-gravitational perturbations and satellite geodesy , 1987 .

[2]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[3]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[4]  Martin Berz,et al.  High-Order Robust Guidance of Interplanetary Trajectories Based on Differential Algebra , 2008 .

[5]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods , 2004 .

[6]  D. Scheeres,et al.  New Solar Radiation Pressure Force Model for Navigation , 2010 .

[7]  Brent W. Barbee,et al.  OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis , 2013 .

[8]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[9]  M. Berz,et al.  Asteroid close encounters characterization using differential algebra: the case of Apophis , 2010 .

[10]  Antonio Elipe,et al.  Periodic Orbits Around a Massive Straight Segment , 1999 .

[11]  Daniel J. Scheeres,et al.  Evolution of Comet Nucleus Rotation , 2002 .

[12]  Karen J. Meech,et al.  The excited spin state of Comet 2p/Encke , 2005 .

[13]  A. Morselli,et al.  A high order method for orbital conjunctions analysis: Sensitivity to initial uncertainties , 2014 .

[14]  Ya-Zhong Luo,et al.  A review of uncertainty propagation in orbital mechanics , 2017 .

[15]  M. Ziebart,et al.  Analytical solar radiation pressure modelling for GLONASS using a pixel array , 2001 .

[16]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[17]  J. Kawaguchi,et al.  Guidance and Navigation of Hayabusa Spacecraft for Asteroid Exploration and Sample Return Mission , 2006, 2006 SICE-ICASE International Joint Conference.

[18]  Jianping Yuan,et al.  Modeling and analysis of periodic orbits around a contact binary asteroid , 2015 .

[19]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[20]  Alessandro Rossi,et al.  Evolution of NEO rotation rates due to close encounters with Earth and Venus , 2003 .

[21]  M. C. Nolan,et al.  The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements , 2019, Nature Astronomy.

[22]  C. Mooney,et al.  Monte Carlo Simulation , 1997 .

[23]  George Beekman,et al.  I. O. Yarkovsky and the Discovery of ‘His’ Effect , 2006 .

[24]  D R Golish,et al.  The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations , 2019, Nature Communications.

[25]  Daniel J. Scheeres,et al.  Precise Solar Radiation Pressure Models for Small-Body Orbiters: Applications to OSIRIS-REx Spacecraft , 2017 .

[26]  D. Scheeres Orbital motion in strongly perturbed environments , 2012 .

[27]  Daniel J. Scheeres,et al.  Sensitivity Analysis of the OSIRIS-REx Terminator Orbits to Maneuver Errors , 2017 .

[28]  P. Bartczak,et al.  Double Material Segment as the Model of Irregular Bodies , 2003 .

[29]  F. Scholten,et al.  A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field , 2016, Nature.

[30]  Jon C. Helton,et al.  Investigation of Evidence Theory for Engineering Applications , 2002 .

[31]  W. Macmillan,et al.  The theory of the potential , 1930 .

[32]  Jinglang Feng,et al.  The semi-analytical analysis of orbital evolution around an asteroid under the effects of the C20 term, the solar radiation pressure and the asteroid’s orbital eccentricity , 2018, Advances in Space Research.

[33]  Jianping Yuan,et al.  Orbital Motion in the Vicinity of the Non-collinear Equilibrium Points of a Contact Binary Asteroid , 2015 .

[34]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[35]  N. Wiener The Homogeneous Chaos , 1938 .

[36]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[37]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[38]  Marc D. Rayman,et al.  Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres , 2006 .

[39]  Hexi Baoyin,et al.  Generating families of 3D periodic orbits about asteroids , 2012 .

[40]  D. Scheeres,et al.  Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia , 1996 .

[41]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[42]  Xiyun Hou,et al.  Orientation and rotational parameters of asteroid 4179 Toutatis: new insights from Chang'e-2's close flyby , 2015, 1504.02024.

[43]  Ilya V. Kolmanovsky,et al.  Constrained control for soft landing on an asteroid with gravity model uncertainty , 2016, 2016 American Control Conference (ACC).

[44]  M. Ziebart High Precision Analytical Solar Radiation Pressure Modelling for GNSS Spacecraft , 2001 .

[45]  P. Michel,et al.  Asteroid Impact and Deflection Assessment mission , 2015 .

[46]  Jürgen Oberst,et al.  Spacecraft orbit lifetime within two binary near-Earth asteroid systems , 2017 .

[47]  Junichiro Kawaguchi,et al.  Linear stability of collinear equilibrium points around an asteroid as a two-connected-mass: Application to fast rotating Asteroid 2000EB14 , 2010 .

[48]  M. Berz,et al.  Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting , 2015 .

[49]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[50]  Robert A. Werner,et al.  The gravitational potential of a homogeneous polyhedron or don't cut corners , 1994 .

[51]  Stephen B. Broschart,et al.  Identification of Non-Chaotic Terminator Orbits near 6489 Golevka , 2009 .

[52]  P. W. Hawkes,et al.  Modern map methods in particle beam physics , 1999 .

[53]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[54]  Daniel J. Scheeres,et al.  ROSETTA mission: satellite orbits around a cometary nucleus , 1998 .

[55]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .

[56]  A. McEwen,et al.  Galileo's Encounter with 243 Ida: An Overview of the Imaging Experiment , 1996 .

[57]  Sharyl Marie Byram,et al.  The Effects of Outgassing Jets on the Rotation of a Comet Nucleus and on the Trajectory of an Orbiting Spacecraft. , 2009 .

[58]  Raktim Bhattacharya,et al.  Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics , 2010 .

[59]  Colin R. McInnes,et al.  Solar Sailing: Technology, Dynamics and Mission Applications , 1999 .

[60]  R. S. Hudson,et al.  Orbits Close to Asteroid 4769 Castalia , 1996 .

[61]  Steven J. Ostro,et al.  Asteroid 4179 Toutatis: 1996 Radar Observations , 1999 .

[62]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[63]  William H. Press,et al.  Numerical recipes , 1990 .

[64]  Ian Carnelli,et al.  The Hera Mission: European Component of the Asteroid Impact and Deflection Assessment (AIDA) Mission to a Binary Asteroid , 2018 .

[65]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[66]  Erwin Mooij,et al.  State propagation in an uncertain asteroid gravity field , 2013 .

[67]  D. J. Scheeres Design and Analysis of Landing Trajectories and Low-Altitude Asteroid Flyovers , 2001 .

[68]  D. Rubincam,et al.  LAGEOS orbit decay due to infrared radiation from Earth , 1987 .

[69]  Xiyun Hou,et al.  Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field , 2017 .

[70]  Akira Fujiwara,et al.  Hayabusa—Its technology and science accomplishment summary and Hayabusa-2 , 2006 .

[71]  R. Park,et al.  Estimating Small-Body Gravity Field from Shape Model and Navigation Data , 2008 .

[72]  E. Dejong,et al.  Dynamics of Orbits Close to Asteroid 4179 Toutatis , 1998 .

[73]  M. Vasile,et al.  Evolution of the Concurrent Design Process Under Uncertainties , 2004 .

[74]  Daniel J. Scheeres,et al.  Effect of Dynamical Accuracy for Uncertainty Propagation of Perturbed Keplerian Motion , 2015 .

[75]  A. T. Fuller,et al.  Analysis of nonlinear stochastic systems by means of the Fokker–Planck equation† , 1969 .

[76]  Martin Berz,et al.  High order optimal control of space trajectories with uncertain boundary conditions , 2014 .

[77]  W. Sjogren,et al.  Mascons: Lunar Mass Concentrations , 1968, Science.

[78]  Daniel J. Scheeres,et al.  Navigation for low-cost missions to small solar-system bodies , 1995 .

[79]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[80]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[81]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[82]  N. Delsate Analytical and numerical study of the ground-track resonances of Dawn orbiting Vesta , 2011 .

[83]  Daniel J. Scheeres,et al.  Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .

[84]  Stephen Kemble,et al.  Preliminary space mission design under uncertainty , 2010 .

[85]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[86]  Jean Souchay,et al.  Gravity field and solar component of the precession rate and nutation coefficients of Comet 67P/Churyumov–Gerasimenko , 2016, 1609.09774.