A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces

Although the Discontinuous Galerkin (dg) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall 1, we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Gruneisen family. Within the dg framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (gpu) to achieve high speedup.

[1]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[2]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[3]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[4]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[5]  Chi-Wang Shu,et al.  Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction , 2007, SIAM J. Numer. Anal..

[6]  J. Jacobs,et al.  PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface , 2002, Journal of Fluid Mechanics.

[7]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[8]  Eric Johnsen,et al.  Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows , 2012, J. Comput. Phys..

[9]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[10]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[11]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[12]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[13]  Rémi Abgrall,et al.  Discrete equations for physical and numerical compressible multiphase mixtures , 2003 .

[14]  I. Toumi A weak formulation of roe's approximate riemann solver , 1992 .

[15]  Slimane Adjerid,et al.  Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem , 2006 .

[16]  J. Freund,et al.  An interface capturing method for the simulation of multi-phase compressible flows , 2010, J. Comput. Phys..

[17]  E. Johnsen,et al.  Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities , 2015 .

[18]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[19]  Eleuterio F. Toro,et al.  HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow , 2010, J. Comput. Phys..

[20]  Chi-Wang Shu,et al.  An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method , 2010, J. Comput. Phys..

[21]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .

[22]  Keh-Ming Shyue,et al.  Regular Article: A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow with van der Waals Equation of State , 1999 .

[23]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[24]  Eric Johnsen Analysis of Numerical Errors Generated by Slowly Moving Shock Waves , 2013 .

[25]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[26]  M. Lombardini,et al.  Richtmyer-Meshkov Instability in Converging Geometries , 2008 .

[27]  Eric Johnsen,et al.  Numerical simulations of non-spherical bubble collapse , 2009, Journal of Fluid Mechanics.

[28]  Dmitri Kuzmin,et al.  A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..

[29]  R. P. Drake,et al.  Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flowa) , 2014 .

[30]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[31]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[32]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[33]  Vincent Perrier,et al.  Runge–Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter , 2012 .

[34]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[35]  Michael Dumbser,et al.  Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed , 2009 .

[36]  Craig Michoski,et al.  A discontinuous Galerkin method for viscous compressible multifluids , 2009, J. Comput. Phys..

[37]  Keh-Ming Shyue,et al.  A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state , 2001 .

[38]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[39]  Eric Johnsen,et al.  A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability , 2013, J. Comput. Phys..

[40]  Shi Jin,et al.  The Effects of Numerical Viscosities , 1996 .

[41]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[42]  Jaap J. W. van der Vegt,et al.  Space-time discontinuous Galerkin finite element method for two-fluid flows , 2011, J. Comput. Phys..

[43]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[44]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[45]  Timothy G. Leighton,et al.  Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation , 2000 .

[46]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[47]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[48]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[49]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[50]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[51]  Suresh Menon,et al.  A generalized approach for sub- and super-critical flows using the Local Discontinuous Galerkin method , 2013 .

[52]  Andrew B. Wardlaw,et al.  Spherical solutions of an underwater explosion bubble , 1998 .

[53]  Vincent Perrier,et al.  Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models , 2012, J. Comput. Phys..

[54]  P. Floch Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .

[55]  Richard Saurel,et al.  Treatment of interface problems with Godunov-type schemes , 1996 .

[56]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[57]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[58]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[59]  Chi-Wang Shu,et al.  WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows , 2012, Journal of Scientific Computing.

[60]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[61]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[62]  G. M. Ward,et al.  A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie-Grüneisen equation of state , 2010, J. Comput. Phys..

[63]  Yuxin Ren,et al.  A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws , 2003 .

[64]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[65]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[66]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[67]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[68]  Theo G. Theofanous,et al.  High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set , 2007, J. Comput. Phys..

[69]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[70]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[71]  Soshi Kawai,et al.  A high‐resolution scheme for compressible multicomponent flows with shock waves , 2011 .

[72]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[73]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[74]  Oleg Schilling,et al.  Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability , 2006, J. Comput. Phys..