An efficient algorithm for multisensor track fusion

An efficient algorithm for track-to-track fusion by incorporating cross-covariance between tracks created by dissimilar sensors is described. An analytical solution of this problem is complicated if cross-correlation between sensors tracking the same target is taken into account. An explicit solution of the cross-covariance matrix at steady state is derived in terms of an integral. It is shown that solution of this integral involves inversion of a matrix whose elements are functions of parameters of individual trackers. Structure of this matrix is analyzed. An efficient analytical solution for inversion of this matrix is obtained. For fusion of similar sensors, it is shown that this matrix is reduced to the Routh-Hurwitz matrix which arises in the study of steady state stability of linear systems. Numerical results showing the amount of reduction of fused track covariance by taking into account the effects of cross-correlation between candidate tracks for fusion is also presented.