Polarization-insensitive optical amplifier with tensile-strained-barrier MQW structure

A new approach to achieving a polarization-insensitive semiconductor optical amplifier is presented. The active layer consists of a tensile-strained-barrier MQW structure that enhances TM mode gain. Polarization sensitivity below 0.5 dB is realized at a wavelength of 1.56 /spl mu/m. A signal gain of 27.5 dB is obtained along with a saturation output power of 14 dBm. Deriving the refractive indices of well and barrier layers from both experiment and theory, we succeed in separation of the effect of the confinement factor and the gain coefficient. It is determined that TM mode gain enhancement in this structure is primarily due to the increase in the confinement factor. >

[1]  Andrew D. Ellis,et al.  Polarisation-insensitive, near-travelling-wave semiconductor laser amplifiers at 1.5 mu m , 1989 .

[2]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[3]  Kunishige Oe,et al.  Energy band‐gap shift with elastic strain in GaxIn1−xP epitaxial layers on (001) GaAs substrates , 1983 .

[4]  Y. Noguchi,et al.  1.55 mu m polarization-insensitive high-gain tensile-strained-barrier MQW optical amplifier , 1991, IEEE Photonics Technology Letters.

[5]  T. Saitoh,et al.  1.5 µm GaInAsP traveling-wave semiconductor laser amplifier , 1987 .

[6]  T. Mukai,et al.  Structural design for polarization-insensitive travelling-wave semiconductor laser amplifiers , 1989 .

[7]  J.-L. Lafragette,et al.  1.55 mu m high-gain polarisation-insensitive semiconductor travelling wave amplifier with low driving current , 1990 .

[8]  E. O’Reilly,et al.  Improved performance due to suppression of spontaneous emission in tensile-strain semiconductor lasers , 1991 .

[9]  T. Kamijoh,et al.  Strained Layer Quantum Well Semiconductor Optical Amplifiers: Polarization Insensitive Amplification, , 1991 .

[10]  K. Magari,et al.  Polarization insensitive traveling wave type amplifier using strained multiple quantum well structure , 1990, IEEE Photonics Technology Letters.

[11]  K. Oe,et al.  Internal strain and photoelastic effects in Ga1−xAlxAs/GaAs and In1−xGaxAsyP1−y/InP crystals , 1983 .

[12]  N. A. Olsson,et al.  Polarisation-independent optical amplifier with buried facets , 1989 .

[13]  B. Weiss,et al.  The refractive index of III–V semiconductor strained-layer superlattices , 1991, Optical and Quantum Electronics.

[14]  H. G. Weber,et al.  Optical amplifier configurations with low polarisation sensitivity , 1987 .

[15]  Eli Yablonovitch,et al.  Band structure engineering of semiconductor lasers for optical communications , 1988 .

[16]  TM mode gain enhancement in GaInAs-InP lasers with tensile strained-layer superlattice , 1991 .

[17]  Shinji Tsuji,et al.  Polarisation-independent semiconductor optical amplifier module using twin grin rod lenses , 1991 .

[18]  J. O. Kephart,et al.  CLASSICAL PHENOMENOLOGY: Electricity, Magnetism, Optics, Acoustics, Heat, Mechanics (PACS 41-52) 285 Effect of uniaxial stress on optical gain in semiconductors , 1984 .

[19]  N. A. Olsson,et al.  Polarisation-independent configuration optical amplifier , 1988 .