Interactive local clustering operations for high dimensional data in parallel coordinates

In this paper, we propose an approach of clustering data in parallel coordinates through interactive local operations. Different from many other methods in which clustering is globally applied to the whole dataset, our interactive scheme allows users to directly apply attractive and repulsive operators at regions of interests, taking advantages of an electricity interaction metaphor, for clutter reduction and cluster detection. Our design enables users to interact directly with the parallel coordinate plots and provides great flexibility in exploring and revealing underlying patterns. With instant feedback, our work allows users to dynamically adjust the clustering parameters to reach an optimum. We also supply the user with a graph indicating the logical relationship between clusters. Our experiments show that our scheme is more efficient than traditional methods in performing visual analysis tasks.

[1]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[2]  Alan J. Dix,et al.  Enabling Automatic Clutter Reduction in Parallel Coordinate Plots , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Matthew D. Cooper,et al.  A Screen Space Quality Method for Data Abstraction , 2008, Comput. Graph. Forum.

[4]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[6]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[7]  Harri Siirtola Direct manipulation of parallel coordinates , 2000, CHI Extended Abstracts.

[8]  Hong Zhou,et al.  Splatting the Lines in Parallel Coordinates , 2009, Comput. Graph. Forum.

[9]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[10]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[11]  Helwig Hauser,et al.  Angular brushing of extended parallel coordinates , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[12]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[13]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[14]  Haim Levkowitz,et al.  Uncovering Clusters in Crowded Parallel Coordinates Visualizations , 2004, IEEE Symposium on Information Visualization.

[15]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[16]  Klaus Mueller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Illustrative Parallel Coordinates , 2022 .

[17]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[18]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[19]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[20]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[21]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[22]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[23]  John T. Stasko,et al.  Dust & Magnet: Multivariate Information Visualization Using a Magnet Metaphor , 2005, Inf. Vis..

[24]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.