Edge-preserving nonnegative deconvolution of hyperspectral fluorescence microscopy images

In many hyperspectral image restoration problems, some prior information is available, such as the spatial and/or spectral regularity of the solution. Additionally, a nonnegativ-ity constraint must often be imposed to provide a physically meaningful estimate. The restored image is then obtained as the constrained minimizer of a penalized convex criterion. In this paper, we propose a fast algorithm for edge-preserving hyperspectral image restoration.

[1]  P. Stokseth Properties of a Defocused Optical System , 1969 .

[2]  A. J. Berkhout,et al.  LEAST‐SQUARES INVERSE FILTERING AND WAVELET DECONVOLUTION , 1977 .

[3]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[4]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[6]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[7]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[8]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[9]  Jérôme Idier,et al.  Convex half-quadratic criteria and interacting auxiliary variables for image restoration , 2001, IEEE Trans. Image Process..

[10]  Mila Nikolova,et al.  Analysis of Half-Quadratic Minimization Methods for Signal and Image Recovery , 2005, SIAM J. Sci. Comput..

[11]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.

[12]  Yves Goussard,et al.  On global and local convergence of half-quadratic algorithms , 2006, IEEE Transactions on Image Processing.

[13]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[14]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[15]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[16]  Patrick L. Combettes,et al.  Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..

[17]  Michael Unser,et al.  Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint , 2008, 2008 15th IEEE International Conference on Image Processing.

[18]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[19]  Ferréol Soulez,et al.  Joint deconvolution and demosaicing , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[20]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[21]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[22]  Patrick Siarry,et al.  Optimization in signal and image processing , 2009 .

[23]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[24]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[25]  Nicolas Gillis,et al.  Dimensionality reduction, classification, and spectral mixture analysis using non-negative underapproximation , 2011 .

[26]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[27]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[28]  Hugues Talbot,et al.  Poisson-Gaussian noise parameter estimation in fluorescence microscopy imaging , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[29]  Jeffrey A. Fessler,et al.  Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts , 2013, IEEE Transactions on Image Processing.

[30]  Charles Soussen,et al.  Edge-preserving nonnegative hyperspectral image restoration , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Mário A. T. Figueiredo,et al.  Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers , 2012, IEEE Transactions on Image Processing.

[32]  Émilie Chouzenoux,et al.  Algorithme primal-dual de points intérieurs pour l'estimation pénalisée des cartes d'abondances en imagerie hyperspectrale , 2011, Traitement du Signal.

[33]  Charles Soussen,et al.  Fast Positive Deconvolution of Hyperspectral Images , 2013, IEEE Transactions on Image Processing.

[34]  Ferréol Soulez,et al.  Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Michael Unser,et al.  Poisson Image Reconstruction With Hessian Schatten-Norm Regularization , 2013, IEEE Transactions on Image Processing.

[36]  Charles Soussen,et al.  Does Deblurring Improve Geometrical Hyperspectral Unmixing? , 2014, IEEE Transactions on Image Processing.

[37]  Méthodes proximales pour la résolution de problèmes inverses , 2014 .