Meta features for remote sensing image content indexing

In this paper we present a general formalism to model several levels of meta information on spatial content. In particular, we expand on a two-level procedure of Bayesian inference: model fitting and model selection. We study five cases of extraction of spatial information from remote sensing images using this scheme. In this way, we put together pieces of information obtained from different levels of interpretation of the original image data.

[1]  Mihai Datcu,et al.  Spatial information retrieval from remote-sensing images. I. Information theoretical perspective , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[3]  Noam Chomsky,et al.  Aspekte der Syntax-Theorie , 1969 .

[4]  M. Schroder,et al.  User-oriented content labeling in remote sensing image archives , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[5]  C. R. Smith,et al.  Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .

[6]  M. Schroder,et al.  Query by image content from remote sensing archives , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[7]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[8]  V. F Kumar,et al.  Image Interpretation Using Bayesian Networks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Mihai Datcu,et al.  Spatial information retrieval from remote-sensing images. II. Gibbs-Markov random fields , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .