The free-flight response of Drosophila to motion of the visual environment

SUMMARY In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a `Hassenstein–Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120° within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.

[1]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[2]  G Heide,et al.  Neural control of asynchronous flight muscles in flies during induced flight manoeuvres , 1985 .

[3]  Ravi Ramamurti,et al.  Computational study of 3-D flapping foil flows , 2001 .

[4]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[5]  M. Dickinson,et al.  Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  G. Nalbach,et al.  Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system , 1994, Neuroscience.

[7]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[8]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[9]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[10]  Karl Georg Götz,et al.  Bewegungssehen und Flugsteuerung bei der Fliege Drosophila , 1983 .

[11]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[12]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[13]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[14]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[15]  M. Dickinson,et al.  The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. , 2001, The Journal of experimental biology.

[16]  K. Götz,et al.  Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. , 1996, The Journal of experimental biology.

[17]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[18]  F. Lehmann,et al.  The aerodynamic benefit of wing–wing interaction depends on stroke trajectory in flapping insect wings , 2007, Journal of Experimental Biology.

[19]  M. Dickinson,et al.  The production of elevated flight force compromises manoeuvrability in the fruit fly Drosophila melanogaster. , 2001, The Journal of experimental biology.

[20]  R. Wolf,et al.  Visual control of straight flight in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[21]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[22]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[23]  V. Hartenstein,et al.  Drosophila melanogaster , 2005 .

[24]  M. Dickinson,et al.  Position‐specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina , 1996, The Journal of comparative neurology.

[25]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[26]  J Palka,et al.  Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. Wolf,et al.  Reafferent control of optomotor yaw torque inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[28]  D. Sandeman,et al.  Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata) , 1980, Journal of comparative physiology.

[29]  M. Egelhaaf,et al.  Vision in flying insects , 2002, Current Opinion in Neurobiology.

[30]  Michael H Dickinson,et al.  Role of calcium in the regulation of mechanical power in insect flight. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Götz,et al.  Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster , 1996, Journal of Comparative Physiology A.

[32]  M. Egelhaaf,et al.  Optomotor course control in flies with largely asymmetric visual input , 2000, Journal of Comparative Physiology A.

[33]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  Michael H Dickinson,et al.  Fly Flight A Model for the Neural Control of Complex Behavior , 2001, Neuron.

[35]  A. Borst,et al.  Spatio-temporal integration of motion , 1988, The Science of Nature.

[36]  A. R. Ennos The kinematics and aerodynamics of the free flight of some diptera , 1989 .

[37]  Colin Blakemore,et al.  Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation , 2007, Current Biology.

[38]  F. Lehmann,et al.  Turning behaviour depends on frictional damping in the fruit fly Drosophila , 2007, Journal of Experimental Biology.

[39]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[40]  Fritz-Olaf Lehmann,et al.  Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. , 2004, Arthropod structure & development.

[41]  H. Wagner Aspects of the free flight behaviour of houseflies (Musca domestica) , 1985 .

[42]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[43]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[44]  R. Wehner Spatial Vision in Arthropods , 1981 .

[45]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[46]  M. Dickinson,et al.  The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[47]  Michael B. Reiser,et al.  A test bed for insect-inspired robotic control , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[49]  R. Schmidt,et al.  Progress in Sensory Physiology , 1991, Progress in Sensory Physiology.

[50]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[51]  Dawnis M. Chow,et al.  The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila , 2007, Journal of Experimental Biology.

[52]  T. S. Collett,et al.  Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly , 1980, Journal of comparative physiology.

[53]  Alexander Borst,et al.  Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects , 1992, Neuroscience Letters.

[54]  Martin Egelhaaf,et al.  Visual afferences to flight steering muscles controlling optomotor responses of the fly , 1989, Journal of Comparative Physiology A.

[55]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[56]  Heinrich H. Bülthoff,et al.  On robots and flies: Modeling the visual orientation behavior of flies , 1999, Robotics Auton. Syst..

[57]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[58]  Roland Hengstenberg,et al.  Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .

[59]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[60]  M. Sanders Handbook of Sensory Physiology , 1975 .

[61]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[62]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[63]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[64]  P. Pochet A Quantitative Analysis , 2006 .

[65]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[66]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[67]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[68]  Organs of Equilibrium in Flying Insects , 1946, Nature.

[69]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[70]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[71]  M. Dickinson,et al.  Haltere Afferents Provide Direct, Electrotonic Input to a Steering Motor Neuron in the Blowfly, Calliphora , 1996, The Journal of Neuroscience.

[72]  M. Heisenberg,et al.  The sensory-motor link in motion-dependent flight control of flies. , 1993, Reviews of oculomotor research.

[73]  D. Tracey Head movements mediated by halteres in the fly,Musca domestica , 1975, Experientia.

[74]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[75]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[76]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[77]  A. Borst,et al.  Motion computation and visual orientation in flies. , 1993, Comparative biochemistry and physiology. Comparative physiology.

[78]  F. Lehmann,et al.  Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster , 1999, Journal of Comparative Physiology B.

[79]  M. Dickinson,et al.  Summation of visual and mechanosensory feedback in Drosophila flight control , 2004, Journal of Experimental Biology.

[80]  Alexander Borst,et al.  Dendritic integration of motion information in visual interneurons of the blowfly , 1992, Neuroscience Letters.

[81]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. S. Tu,et al.  The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina) , 1996, Journal of Comparative Physiology A.