Evaluation of Sodium Azide as a Chemical Mutagen in Developing Cold-Tolerant Quinoa (Chenopodium quinoa Willd.) Lines

[1]  A. Nower,et al.  IN VITRO MUTAGENESIS AND PROPAGATION OF PAULOWNIA TOMENTOSA (THUMB) FOR SALT TOLERANCE , 2022, SABRAO Journal of Breeding and Genetics.

[2]  Hao Li,et al.  Full-Length Transcriptome Sequencing Reveals the Impact of Cold Stress on Alternative Splicing in Quinoa , 2022, International journal of molecular sciences.

[3]  Yan Cheng,et al.  Plant Low-Temperature Stress: Signaling and Response , 2022, Agronomy.

[4]  A. Missaoui,et al.  Cold Stress in Plants: Strategies to Improve Cold Tolerance in Forage Species , 2022, Plant Stress.

[5]  M. Honma,et al.  Potent mutagenicity of an azide, 3-azido-1,2-propanediol, in human TK6 cells. , 2022, Mutation research. Genetic toxicology and environmental mutagenesis.

[6]  R. Khalil,et al.  The effect of gamma rays on quinoa plant and evaluation of promising genotypes under salinity stress , 2020 .

[7]  B. Ikhajiagbe,et al.  Growth, yield, genetic parameters and random amplified polymorphic DNA (RAPD) of five rice varieties treated with sodium azide and sown under different saline conditions , 2020, Bulletin of the National Research Centre.

[8]  Su Chen,et al.  Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants , 2020, Plants.

[9]  C. Gupta Studies on Induction of Somaclonal Variation in Sugarcane (Saccharum officinarum) and Validation of Mutant Using Molecular Markers , 2020 .

[10]  S. Graeff‐Hönninger,et al.  Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization , 2020, Foods.

[11]  H. Brinch-Pedersen,et al.  Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences , 2019, Front. Plant Sci..

[12]  V. E. Viana,et al.  Mutagenesis in Rice: The Basis for Breeding a New Super Plant , 2019, Front. Plant Sci..

[13]  A. Gatica-Arias,et al.  Sensitivity of Seeds to Chemical Mutagens, Detection of DNA Polymorphisms and Agro-Metrical Traits in M1 Generation of Coffee (Coffea arabica L.) , 2019, Journal of Crop Science and Biotechnology.

[14]  O. Galal,et al.  EVALUATION OF SILICA NANOPARTICLES (SiO2NP) AND SOMACLONAL VARIATION EFFECTS ON GENOME TEMPLATE STABILITY IN RICE USING RAPD AND SSR MARKERS , 2019 .

[15]  N. Louwaars Plant breeding and diversity: A troubled relationship? , 2018, Euphytica.

[16]  S. Akladious,et al.  Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants , 2018, Journal, genetic engineering & biotechnology.

[17]  M. Fan,et al.  Genetic resources offer efficient tools for rice functional genomics research. , 2016, Plant, cell & environment.

[18]  M. Aydin,et al.  Effect of Putrescine Application and Drought Stress on Germination of Wheat (Triticum aestivum L.) , 2016 .

[19]  Magaji G. Usman,et al.  Principle and application of plant mutagenesis in crop improvement: a review , 2016 .

[20]  P. Tantasawat,et al.  Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium 'Earsakul' mutants. , 2014, Genetics and molecular research : GMR.

[21]  L. Moysset,et al.  EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations , 2014, Plant Methods.

[22]  Amin Alborzian Deh Sheikh,et al.  Mutagenesis in olive (Olea europaea L.) calli caused by sodium azide and detection of mutants using ISSR and RAPD markers , 2014 .

[23]  A. Talebi,et al.  Ethyl Methane Sulphonate (EMS) Induced Mutagenesis in Malaysian Rice (cv. MR219) for Lethal Dose Determination , 2012 .

[24]  Alka,et al.  Sodium azide (NaN3) induced genetic variation of Psoralea corylifolia L. and analysis of variants using RAPD markers , 2012, The Nucleus.

[25]  Sandeep Kumar,et al.  Over expression of resistin in adipose tissue of the obese induces insulin resistance. , 2012, World journal of diabetes.

[26]  G. Mostafa,et al.  RAPD Analysis for Detection and Fingerprinting of Sunflower Mutants Induced by Sodium Azide , 2011 .

[27]  Srinivasan Ramachandran,et al.  Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis , 2010, Biotechnology Letters.

[28]  Yunbi Xu,et al.  Molecular Plant Breeding , 2010 .

[29]  Samiullah Khan,et al.  Improvement of mungbean varieties through induced mutations , 2009 .

[30]  M. Rakszegi,et al.  Mutation discovery for crop improvement. , 2009, Journal of experimental botany.

[31]  Rita H. Mumm,et al.  Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement1 , 2008, Plant Physiology.

[32]  L. Bravo,et al.  Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.) , 2007 .

[33]  A. Jha,et al.  The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. , 2006, Mutation research.

[34]  H. Eroğlu,et al.  Effects of the Application of Different Concentrations of NaN3 for Different Times on the Morphological and Cytogenetic Characteristics of Barley (Hordeum vulgare L.) Seedlings , 2005 .

[35]  Ç. Atak,et al.  Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD. , 2004, Mutation research.

[36]  B. Trognitz Prospects of Breeding Quinoa for Tolerance to Abiotic Stress , 2003 .

[37]  F J Rohlf,et al.  On applications of geometric morphometrics to studies of ontogeny and phylogeny. , 1998, Systematic biology.

[38]  P. Grúz,et al.  Mutagenicity of 3-azido-1,2-propanediol and 9-(3-azido-2-hydroxypropyl)-adenine in repair deficient strains of Escherichia coli. , 1993, Mutation research.

[39]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[40]  A. Kleinhofs,et al.  Metabolic activation of the mutagen azide in biological systems. , 1988, Mutation research.

[41]  M. Godward,et al.  Radiation Studies in Lens culinaris Meiosis: abnormalities induced due to gamma radiation and its consequences , 1972 .

[42]  N. Simmonds The breeding system of Chenopodium quinoa I. Male sterility , 1971, Heredity.

[43]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[44]  M. Sheidai,et al.  Somaclonal variation in pomegranate (Punica granatum L.): ISSR and cytological evidences , 2022, Genetika.

[45]  V. Ranghoo-Sanmukhiya Somaclonal Variation and Methods Used for Its Detection , 2020 .

[46]  R. Ibrahim,et al.  Mutation Breeding in Ornamentals , 2018 .

[47]  M. Girija,et al.  Genetic Diversity Analysis of Cowpea Mutant (Vigna unguiculata (L.) Walp) as Revealed by RAPD Marker , 2013 .

[48]  I. Szarejko,et al.  Sodium azide as a mutagen. , 2012 .

[49]  S. Jain Mutagenesis in crop improvement under the climate change , 2010 .

[50]  F. Anwar,et al.  Sodium Azide : a Chemical Mutagen for Enhancement of Agronomic Traits of Crop Plants , 2010 .

[51]  P. Suprasanna,et al.  In vitro Mutagenesis in Banana (Musa spp.) using Gamma Irradiation , 2007 .

[52]  A. Bhargava,et al.  Chenopodium quinoa - an Indian perspective , 2006 .

[53]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[54]  A. Kleinhofs,et al.  Azide mutagenesis in barley , 1976 .