Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: An in vivo autoradiographic study

[1]  D. Scherman,et al.  Quantitative autoradiography of the rat brain vesicular monoamine transporter using the binding of [3H]dihydrotetrabenazine and 7-amino-8-[125I]iodoketanserin , 1989, Neuroscience.

[2]  H. Narabayashi,et al.  Hemiparkinsonism in monkeys after unilateral caudate nucleus infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): behavior and histology , 1988, Brain Research.

[3]  S. Markey,et al.  Recommended safe practices for using the neurotoxin MPTP in animal experiments. , 1988, Laboratory animal science.

[4]  S. Markey,et al.  Metabolism of [14C]MPTP in mouse and monkey implicates MPP+, and not bound metabolites, as the operative neurotoxin. , 1988, Chemical research in toxicology.

[5]  A. Crane,et al.  Administration of MPTP acutely increases glucose utilization in the substantia nigra of primates , 1988, Brain Research.

[6]  A. Cesura,et al.  Uptake, Release, and Subcellular Localization of l‐Methyl‐4‐Phenylpyridinium in Blood Platelets , 1987, Journal of neurochemistry.

[7]  M. Horne,et al.  MPTP, impairment of motor performance and amine accumulation in Macaca fasicularis , 1987, Brain Research Bulletin.

[8]  E. Sundström,et al.  Uptake inhibition protects nigro-striatal dopamine neurons from the neurotoxicity of 1-methyl-4-phenylpyridine (MPP+) in mice. , 1986, European journal of pharmacology.

[9]  D. Jacobowitz,et al.  Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). , 1986, Life sciences.

[10]  D. Price,et al.  Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A tyrosine hydroxylase immunocytochemical study in monkey , 1986, Neuroscience.

[11]  S. Snyder,et al.  Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. , 1986, Science.

[12]  S. Snyder,et al.  Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. S. Burns,et al.  Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism , 1984, Nature.

[14]  P. Goldman-Rakic,et al.  Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis , 1984, The Journal of comparative neurology.

[15]  K. Chiba,et al.  Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. , 1984, Biochemical and biophysical research communications.

[16]  C. Rebert,et al.  Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey , 1984, Brain Research.

[17]  D. Jacobowitz,et al.  A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Langston,et al.  Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. , 1983, Science.

[19]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[20]  M. Ishikawa,et al.  Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain , 1982, Brain Research Bulletin.

[21]  D. Felten,et al.  Monoamine distribution in primate brain. V. Monoaminergic nuclei: Anatomy, pathways, and local organization , 1982, Brain Research Bulletin.

[22]  C. Saper,et al.  Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups. , 1982, Brain : a journal of neurology.

[23]  P. Goldman-Rakic,et al.  Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP , 1982, The Journal of comparative neurology.

[24]  M Mishkin,et al.  Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey , 1980, The Journal of comparative neurology.

[25]  L. Sokoloff,et al.  Computerized densitometry and color coding of [14C] deoxyglucose autoradiographs , 1980, Annals of neurology.

[26]  W. Nauta,et al.  Efferent connections of the substantia nigra and ventral tegmental area in the rat , 1979, Brain Research.

[27]  L. Wolfson,et al.  Juvenile parkinsonism: A patient with possible primary striatal dysfunction , 1978, Annals of neurology.

[28]  P. Maclean,et al.  A brainstem atlas of catecholaminergic neurons and serotonergic perikarya in a pygmy primate (Cebuella pygmaea) , 1978, The Journal of comparative neurology.

[29]  T. Sourkes,et al.  INFLUENCE OF THE SUBSTANTIA NIGRA ON THE CATECHOLAMINE CONTENT OF THE STRIATUM. , 1965, Brain : a journal of neurology.

[30]  M. Monnier,et al.  A Stereotaxic Atlas of the Monkey Brain , 1962 .

[31]  D. Jacobowitz,et al.  N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) causes destruction of the nigrostriatal but not the mesolimbic dopamine system in the monkey. , 1984, Psychopharmacology bulletin.

[32]  K. Fuxe,et al.  FURTHER EVIDENCE FOR THE PRESENCE OF NIGRO-NEOSTRIATAL DOPAMINE NEURONS IN THE RAT. , 1965, The American journal of anatomy.