Single crystal of a one-dimensional metallo-covalent organic framework

[1]  Kun Zhang,et al.  Covalent‐Organic‐Framework‐Based Li–CO2 Batteries , 2019, Advanced materials.

[2]  Junliang Sun,et al.  Isostructural Three-Dimensional Covalent Organic Frameworks. , 2019, Angewandte Chemie.

[3]  Lei Wei,et al.  Atomic-Level Characterization of Dynamics of a 3D Covalent Organic Framework by Cryo-Electron Diffraction Tomography. , 2019, Journal of the American Chemical Society.

[4]  V. Valtchev,et al.  Chemically stable polyarylether-based covalent organic frameworks , 2019, Nature Chemistry.

[5]  Chenhui Zhu,et al.  3D Covalent Organic Frameworks of Interlocking 1D Square Ribbons. , 2018, Journal of the American Chemical Society.

[6]  Jie Su,et al.  Single-crystal x-ray diffraction structures of covalent organic frameworks , 2018, Science.

[7]  J. Navarro The dynamic art of growing COF crystals , 2018, Science.

[8]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[9]  K. Loh,et al.  Tuneable near white-emissive two-dimensional covalent organic frameworks , 2018, Nature Communications.

[10]  Ahmed S. Etman,et al.  Observation of Interpenetration Isomerism in Covalent Organic Frameworks. , 2018, Journal of the American Chemical Society.

[11]  Lars Öhrström,et al.  Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. , 2017, Chemical communications.

[12]  P. Beer,et al.  Metal ions in the synthesis of interlocked molecules and materials. , 2017, Chemical Society reviews.

[13]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[14]  J. Segura,et al.  Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. , 2016, Chemical Society reviews.

[15]  D. Jiang,et al.  Covalent organic frameworks: a materials platform for structural and functional designs , 2016, Nature Reviews Materials.

[16]  Wei Wang,et al.  Synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks via the direct condensation of acetals and amines. , 2016, Chemical communications.

[17]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[18]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[19]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[20]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[21]  Yang Yang,et al.  Single-Crystal Linear Polymers Through Visible Light–Triggered Topochemical Quantitative Polymerization , 2014, Science.

[22]  Sven Hovmöller,et al.  Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing , 2013, Journal of applied crystallography.

[23]  William R. Dichtel,et al.  β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. , 2013, Journal of the American Chemical Society.

[24]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[25]  T. Maris,et al.  Constructing monocrystalline covalent organic networks by polymerization , 2013, Nature Chemistry.

[26]  T. Bein,et al.  A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. , 2013, Angewandte Chemie.

[27]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[28]  B. T. King,et al.  A two-dimensional polymer prepared by organic synthesis. , 2012, Nature chemistry.

[29]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[30]  W. T. Wipke,et al.  Hydride as a leaving group in the reaction of pinacolborane with halides under ambient Grignard and Barbier conditions. One-pot synthesis of alkyl, aryl, heteroaryl, vinyl, and allyl pinacolboronic esters. , 2011, The Journal of organic chemistry.

[31]  S. Xiang,et al.  A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. , 2011, Journal of the American Chemical Society.

[32]  F. W. Fowler,et al.  Single-crystal-to-single-crystal topochemical polymerizations by design. , 2008, Accounts of chemical research.

[33]  J. Nitschke Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. , 2007, Accounts of chemical research.

[34]  P. Corbett,et al.  Dynamic combinatorial chemistry. , 2006, Chemical reviews.

[35]  P. Halasyamani,et al.  Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. , 2006, Chemical Society reviews.

[36]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[37]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[38]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[39]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[40]  A. J. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[41]  M. Kanatzidis,et al.  Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry , 2000 .

[42]  J. Wuest,et al.  Molecular Tectonics. Porous Hydrogen-Bonded Networks with Unprecedented Structural Integrity , 1997 .

[43]  D. F. Eaton,et al.  Nonlinear Optical Materials , 1991, Science.