Biomedical Magnetic Resonance Spectroscopic Quantitation : a Review of Modern time-domain Analysis Methods

(Nuclear) Magnetic Resonance ((N)MR) is a non-invasive technique that has been used to acquire spatially resolved images of living organisms and to monitor changes in the metabolism. An application of clinical MR is MR spectroscopy (MRS) in which chemical information can be obtained from a well-defined region in for example the human brain. The parameters of the MRS signal provide direct information about the molecules of the organism under investigation: the frequency of the spectral components characterizes the identity of the molecules, the damping characterizes the mobility of the molecules and the intensity (amplitude) is directly proportional to the number of molecules. Accurate quantification of MRS signals is the essential step prior to the conversion of the estimated signal parameters into biochemical quantities (e.g. concentration, pH). In this paper an overview of modern analysis methods is given. Keywords—Magnetic Resonance Spectroscopy, Biomedical Signal Processing.

[1]  Sabine Van Huffel,et al.  Subspace-based exponential data modeling using prior knowledge , 1998 .

[2]  A. D. de Graaf,et al.  Quality: quantification improvement by converting lineshapes to the lorentzian type , 1990, Magnetic resonance in medicine.

[3]  David S. Stephenson,et al.  Linear prediction and maximum entropy methods in NMR spectroscopy , 1989 .

[4]  C Boesch,et al.  Versatile frequency domain fitting using time domain models and prior knowledge , 1998, Magnetic resonance in medicine.

[5]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[6]  S Van Huffel,et al.  Accurate quantification of (1)H spectra: from finite impulse response filter design for solvent suppression to parameter estimation. , 1999, Journal of magnetic resonance.

[7]  Yung-Ya Lin,et al.  A Novel Detection–Estimation Scheme for Noisy NMR Signals: Applications to Delayed Acquisition Data , 1997 .

[8]  Srinivasan Umesh,et al.  Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood estimation with application to NMR spectroscopy data , 1996, IEEE Trans. Signal Process..

[9]  Z. S. Liu,et al.  Spectral fitting of NMR spectra using an alternating optimization method with a priori knowledge. , 1999, Journal of magnetic resonance.

[10]  P Boesiger,et al.  Heuristic optimization algorithms applied to the quantification of spectroscopic data , 1998, Magnetic resonance in medicine.

[11]  Jian Li,et al.  RELAX-based estimation of damped sinusoidal signal parameters , 1997, Signal Process..

[12]  J. Antoine,et al.  Water peak suppression: time-frequency vs time-scale approach. , 2000, Journal of magnetic resonance.

[13]  J.H.J. Leclerc Distortion-free suppression of the residual water peak in proton spectra by postprocessing , 1994 .

[14]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[15]  S. C. Chen,et al.  Parallel Algorithms for Maximum-Likelihood Nuclear Magnetic Resonance Spectroscopy , 1993 .

[16]  de Beer R,et al.  LeuvenDepartement Elektrotechniek ESAT-SISTA / TR 1997-89 Fast removal of residual water in proton spectra 1 , 2022 .

[17]  B J Soher,et al.  Representation of strong baseline contributions in 1H MR spectra , 2001, Magnetic resonance in medicine.

[18]  D. van Ormondt,et al.  Frequency-selective quantification in the time domain , 1992 .

[19]  S Van Huffel,et al.  Frequency-selective MRS data quantification with frequency prior knowledge. , 1998, Journal of magnetic resonance.

[20]  A A Maudsley,et al.  Spectral lineshape determination by self-deconvolution. , 1995, Journal of magnetic resonance. Series B.

[21]  Roger J. Ordidge,et al.  THE CORRECTION OF TRANSIENT B0 FIELD SHIFTS FOLLOWING THE APPLICATION OF PULSED GRADIENTS BY PHASE CORRECTION IN THE TIME DOMAIN , 1986 .

[22]  A Macovski,et al.  Inhomogeneity correction for in vivo spectroscopy by high‐resolution water referencing , 1992, Magnetic resonance in medicine.

[23]  P Webb,et al.  Water referencing for spectroscopic imaging , 1989, Magnetic resonance in medicine.

[24]  David Cowburn,et al.  Parametric estimation of time-domain NMR signals using simulated annealing , 1992 .

[25]  Yutaka Kuroda,et al.  Postacquisition data processing method for suppression of the solvent signal , 1989 .

[26]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[27]  Bhaskar D. Rao,et al.  Relationship between matrix pencil and state space based harmonic retrieval methods , 1990, IEEE Trans. Acoust. Speech Signal Process..

[28]  D. van Ormondt,et al.  Analysis of NMR Data Using Time Domain Fitting Procedures , 1992 .

[29]  H. Chen,et al.  A Signal-Enhancement Algorithm for the Quantification of NMR Data in the Time Domain , 1994 .

[30]  B J Soher,et al.  Automated spectral analysis I: Formation of a priori information by spectral simulation , 1998, Magnetic resonance in medicine.

[31]  B J Soher,et al.  Automated spectral analysis II: Application of wavelet shrinkage for characterization of non‐parameterized signals , 1998, Magnetic resonance in medicine.

[32]  M W Weiner,et al.  Automated processing for proton spectroscopic imaging using water reference deconvolution , 1994, Magnetic resonance in medicine.

[33]  P G Webb,et al.  Automated single‐voxel proton MRS: Technical development and multisite verification , 1994, Magnetic resonance in medicine.

[34]  P. Luyten,et al.  Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge , 1988, Magnetic resonance in medicine.

[35]  D. van Ormondt,et al.  SVD-based quantification of magnetic resonance signals , 1992 .

[36]  D. van Ormondt,et al.  Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .

[37]  G J Metzger,et al.  Application of genetic algorithms to spectral quantification. , 1996, Journal of magnetic resonance. Series B.

[38]  David S. Stephenson,et al.  Linear prediction and maximum entropy methods in NMR spectroscopy , 1988 .

[39]  D. Gadian NMR and its Applications to Living Systems , 1996 .

[40]  P. Allen,et al.  Sources of variability in the response of coupled spins to the PRESS sequence and their potential impact on metabolite quantification , 1999, Magnetic resonance in medicine.

[41]  Sabine Van Huffel,et al.  Parameter Estimation with Prior Knowledge of Known Signal Poles for the Quantification of NMR Spectroscopy Data in the Time Domain , 1996 .

[42]  Jean-Marie Dereppe,et al.  The continuous wavelet transform, an analysis tool for NMR spectroscopy , 1997 .

[43]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[44]  M. Miller,et al.  Maximum-likelihood estimation for nuclear magnetic resonance spectroscopy , 1989 .

[45]  S. Vajda,et al.  Numerical Methods for Non-Linear Optimization , 1973 .

[46]  U. Klose In vivo proton spectroscopy in presence of eddy currents , 1990, Magnetic resonance in medicine.

[47]  D J Drost,et al.  Factors affecting the quantification of short echo in‐vivo 1H MR spectra: prior knowledge, peak elimination, and filtering , 1999, NMR in biomedicine.

[48]  Patrice Koehl,et al.  Linear Prediction Spectral Analysis of NMR Data , 1999 .

[49]  Gareth A. Morris,et al.  Reference deconvolution. Elimination of distortions arising from reference line truncation , 1991 .

[50]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[51]  S. Huffel,et al.  Frequency-selective quantification of biomedical magnetic resonance spectroscopy data. , 2000, Journal of magnetic resonance.

[52]  Sabine Van Huffel,et al.  Improved methods for exponential parameter estimation in the presence of known poles and noise , 1997, IEEE Trans. Signal Process..

[53]  Henrik Gesmar,et al.  Improved Methods for Quantitative Spectral Analysis of NMR Data , 1991 .

[54]  Erik J. Fernandez,et al.  A Flexible Spline Model of the Spin Echo with Applications to Estimation of the Spin-Spin Relaxation Time , 1994 .

[55]  Gareth A. Morris,et al.  Compensation of instrumental imperfections by deconvolution using an internal reference signal , 1988 .

[56]  L Vanhamme,et al.  New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES , 1998, NMR in biomedicine.

[57]  Ad Bax,et al.  Improved solvent suppression in one-and two-dimensional NMR spectra by convolution of time-domain data , 1989 .

[58]  P. Allen,et al.  In vivo NMR spectroscopy. , 1990, Basic life sciences.