Sensing frequency design for capacitance feedback of dielectric elastomers

Abstract Dielectric elastomers, also known as artificial muscles have produced many biomimetic robots. One advantage is their ability to provide feedback through capacitance. However when the sensing frequency is too high, the measured capacitance can underestimate the true value. In this paper, the measured capacitance of dielectric elastomer stacked and rolled configurations were shown to reduce with increasing sensing frequency. A transmission line electrical model linked this to the result of high interconnect and sheet resistances of the electrodes. A design methodology to help determine the working limits of sensing frequency is presented.

[1]  Samuel Rosset,et al.  Self-sensing dielectric elastomer actuators in closed-loop operation , 2013 .

[2]  John D Madden,et al.  Mobile Robots: Motor Challenges and Materials Solutions , 2007, Science.

[3]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[4]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[5]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[6]  Scott Stanford,et al.  Biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Thorben Hoffstadt,et al.  Integrated Sensor Concepts for Dielectric Elastomer Actuators , 2013 .

[8]  Siegfried Bauer,et al.  Capacitive extensometry for transient strain analysis of dielectric elastomer actuators , 2008 .

[9]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[10]  Emilio Calius,et al.  Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  Silvain Michel,et al.  Scaling of planar dielectric elastomer actuators in an agonist-antagonist configuration , 2010 .

[12]  Iain A. Anderson,et al.  Stretch sensors for human body motion , 2014, Smart Structures.

[13]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[14]  C Jordi,et al.  Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators , 2010, Bioinspiration & biomimetics.

[15]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[16]  Hyouk Ryeol Choi,et al.  Self-sensing of dielectric elastomer actuator , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  H. Choi,et al.  A self-sensing dielectric elastomer actuator , 2008 .

[18]  Helmut F. Schlaak,et al.  Modelling and characterization of dielectric elastomer stack actuators , 2013 .

[19]  Peter Sommer-Larsen,et al.  Response of dielectric elastomer actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Thorben Hoffstadt,et al.  Online identification algorithms for integrated dielectric electroactive polymer sensors and self-sensing concepts , 2014 .

[21]  S. Michel,et al.  Stacked dielectric elastomer actuator for tensile force transmission , 2009 .

[22]  Patrick Lochmatter,et al.  An arm wrestling robot driven by dielectric elastomer actuators , 2007 .

[23]  Dirk Brokken,et al.  Combined driving and sensing circuitry for dielectric elastomer actuators in mobile applications , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  Iain A. Anderson,et al.  Artificial Muscle Actuators for a Robotic Fish , 2013, Living Machines.

[25]  K. Tanie,et al.  Biomimetic soft actuator: design, modeling, control, and applications , 2005, IEEE/ASME Transactions on Mechatronics.