Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models

Different studies provide surprisingly a large variety of controversial conclusions about the forecasting power of an indicator, even when it is supposed to forecast the same time series. In this study we aim to provide a thorough overview of linear forecasting techniques and draw conclusions useful for the identification of the predictive relationship between leading indicators and time series. In a case study for Germany we forecast four possible representations of industrial production. Further on we consider a large variety of time-varying specifications: ex post vs. ex ante, rolling vs. recursive and model specifications such as restricted vs. unrestricted, AIC vs. BIC vs. OSC, direct vs. indirect. In a horse race with nine leading indicators plus benchmark we demonstrate the variance of assessment across target variables and forecasting settings (50 per horizon). We show that it is nearly always possible to find situations in which one indicator proved to have better predicting power compared to another.

[1]  Michael P. Clements,et al.  Evaluating a Model by Forecast Performance , 2005 .

[2]  J Wagner Micro Data at the Ifo Institute for Economic Research - The "Ifo Business Survey" Usage and Access , 2008 .

[3]  Georg Goldrian Handbook of Survey-Based Business Cycle Analysis , 2007 .

[4]  M. Werding,et al.  Time limits in a two-tier unemployment benefit scheme under involuntary unemployment , 2010 .

[5]  Oscar Claveria,et al.  Business and consumer expectations and macroeconomic forecasts , 2007 .

[6]  M. Marcellino,et al.  Forecast Pooling for European Macroeconomic Variables , 2004 .

[7]  Guido Schwerdt,et al.  Changes in Human Capital: Implications for Productivity Growth in the Euro Area , 2007 .

[8]  A. Kuhlmann,et al.  German Productivity - A Reassessment via the New Ifo Productivity Database , 2006 .

[9]  Kai E. Sülzle Innovation and Adoption of Electronic Business Technologies , 2007 .

[10]  Thiess Buettner,et al.  Quality of life in the regions: results for German Counties , 2009 .

[11]  Andrew M. Jones,et al.  Health and wages , 2007 .

[12]  Klaus Wohlrabe,et al.  European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access , 2008 .

[13]  Dirk Ulbricht,et al.  Lost in Transmission? Stock Market Impacts of the 2006 European Gas Crisis , 2007 .

[14]  B. Grundig Why is the share of women willing to work in East Germany larger than in West Germany? A logit model of extensive labour supply decision , 2006 .

[15]  J. Stock,et al.  Evidence on Structural Instability in Macroeconomic Time Series Relations , 1994 .

[16]  Gabriela Schütz,et al.  The Economics of Tracking and Non-Tracking , 2007 .

[17]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[18]  Martin Junkernheinrich,et al.  Reform der Gemeindefinanzen , 2003 .

[19]  Steffen R. Henzel Learning Trend Inflation – Can Signal Extraction Explain Survey Forecasts? , 2008 .

[20]  Michael P. Clements,et al.  Forecasting economic and financial time-series with non-linear models , 2004 .

[21]  Sandra Eickmeier,et al.  How Successful are Dynamic Factor Models at Forecasting Output and Inflation? A Meta-Analytic Approach , 2008 .

[22]  Roy Batchelor,et al.  Forecaster Behaviour and Bias in Macroeconomic Forecasts , 2007 .

[23]  A. Kuhlmann,et al.  What is the X-Factor in the German Electricity Industry? , 2006 .

[24]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[25]  A. Timmermann Forecast Combinations , 2005 .

[26]  Michael Berlemann,et al.  Kurzfristige Wachstumseffekte von Naturkatastrophen. Eine empirische Analyse der Flutkatastrophe vom August 2002 in Sachsen , 2007 .

[27]  A. Timmermann,et al.  Economic Forecasting , 2007 .

[28]  Oliver Himmler,et al.  Health and Wages: Panel Data Estimates Considering Selection and Endogeneity , 2010 .

[29]  Massimiliano Marcellino Factor nowcasting of German GDP with ragged-edge data : A model comparison using MIDAS projections , 2007 .

[30]  Das grüne Paradoxon: Warum man das Angebot bei der Klimapolitik nicht vergessen darf , 2008 .

[31]  David F. Hendry,et al.  Non-Parametric Direct Multi-Step Estimation for Forecasting Economic Processes , 2004 .

[32]  M. Medeiros,et al.  Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination , 2005 .

[33]  Arturo Estrella,et al.  The term structure as a predictor of real economic activity , 1991 .

[34]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[35]  On the limitations of comparing mean square forecast errors: Comment , 1993 .

[36]  Christian Schumacher,et al.  Out-of-sample Performance of Leading Indicators for the German Business Cycle: Single vs. Combined Forecasts , 2005 .

[37]  Joachim Benner,et al.  Prognosegüte alternativer Frühindikatoren für die Konjunktur in Deutschland , 2003 .

[38]  Oliver Hülsewig,et al.  Assessing the Forecast Properties of the CESifo World Economic Climate Indicator: Evidence for the Euro Area , 2007 .

[39]  Ray C. Fair,et al.  Comparing Information in Forecasts from Econometric Models , 1990 .

[40]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[41]  J. Temple,et al.  Dualism and cross-country growth regressions , 2004, SSRN Electronic Journal.

[42]  Monika Ruschinski,et al.  Investigating the Cyclical Properties of World Trade , 2006 .

[43]  Kislaya Prasad,et al.  A comparison of model selection criteria , 1992 .

[44]  Dean Croushore,et al.  A real-time data set for macroeconomists , 2001 .

[45]  Klaus Abberger,et al.  Qualitative Business Surveys in Manufacturing and Industrial Production - What can be Learned from Industry Branch Results? , 2006 .

[46]  G. Kempkes,et al.  The efficiency of German universities–some evidence from nonparametric and parametric methods , 2010 .

[47]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[48]  Lutz Kilian,et al.  On the Selection of Forecasting Models , 2003, SSRN Electronic Journal.

[49]  J. Mayr,et al.  VAR Model Averaging for Multi-Step Forecasting , 2007 .

[50]  Frank Schorfheide,et al.  VAR forecasting under misspecification , 2005 .

[51]  J. Stock,et al.  A Comparison of Direct and Iterated Multistep Ar Methods for Forecasting Macroeconomic Time Series , 2005 .

[52]  Sabine Stephan,et al.  Leading Indicators of German Business Cycles. An Assessment of Properties / Frühindikatoren der deutschen Konjunktur. Eine Beurteilung ihrer Eigenschaften , 2000 .

[53]  Kai Sülzle Innovation and Adoption of Electronic Business Technologies , 2006 .

[54]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[55]  Yongil Jeon,et al.  Forecasting Performance of Information Criteria with Many Macro Series , 2004 .

[56]  Sascha Becker,et al.  Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang , 2007, AStA Wirtschafts und Sozialstatistisches Arch..

[57]  Michael Schröder,et al.  Prognosegehalt von ifo-Geschäftserwartungen und ZEW-Konjunkturerwartungen: Ein ökonometrischer Vergleich / Forecasting German industrial Production: An Econometric Comparison of ifo- and ZEW-Business Expectations , 2002 .

[58]  Marco Lippi,et al.  Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area , 2002 .

[59]  J. Stock,et al.  Forecasting Output and Inflation: The Role of Asset Prices , 2001 .

[60]  Christian Schumacher,et al.  Forecasting German GDP Using Alternative Factor Models Based on Large Datasets , 2007, SSRN Electronic Journal.

[61]  Gabriele K. Lünser,et al.  Group reputations An experimental foray , 2010 .

[62]  Klaus Abberger,et al.  Forecasting Quarter-on-Quarter Changes of German GDP with Monthly Business Tendency Survey Results , 2007 .