The Independent Choice Logic and Beyond

The Independent Choice Logic began in the early 90's as a way to combine logic programming and probability into a coherent framework. The idea of the Independent Choice Logic is straightforward: there is a set of independent choices with a probability distribution over each choice, and a logic program that gives the consequences of the choices. There is a measure over possible worlds that is defined by the probabilities of the independent choices, and what is true in each possible world is given by choices made in that world and the logic program. ICL is interesting because it is a simple, natural and expressive representation of rich probabilistic models. This paper gives an overview of the work done over the last decade and half, and points towards the considerable work ahead, particularly in the areas of lifted inference and the problems of existence and identity.

[1]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[2]  L. J. Savage,et al.  The Foundation of Statistics , 1956 .

[3]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[4]  John Seely Brown,et al.  Diagnostic Models for Procedural Bugs in Basic Mathematical Skills , 1978, Cogn. Sci..

[5]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[6]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[7]  V. Lifschitz,et al.  The Stable Model Semantics for Logic Programming , 1988, ICLP/SLP.

[8]  David Poole,et al.  Explanation and prediction: an architecture for default and abductive reasoning , 1989, Comput. Intell..

[9]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[10]  Murray Shanahan,et al.  Prediction is Deduction but Explanation is Abduction , 1989, IJCAI.

[11]  David Poole,et al.  A methodology for using a default and abductive reasoning system , 1989, Int. J. Intell. Syst..

[12]  David Poole,et al.  A Dynamic Approach to Probabilistic Inference using Bayesian Networks , 1990, UAI 1990.

[13]  Nils J. Nilsson,et al.  Logic and Artificial Intelligence , 1991, Artif. Intell..

[14]  David L. Poole,et al.  Representing Bayesian Networks Within Probabilistic Horn Abduction , 1991, UAI.

[15]  David Poole,et al.  Representing Diagnostic Knowledge for Probabilistic Horn Abduction , 1991, IJCAI.

[16]  Johann Eder,et al.  Logic and Databases , 1992, Advanced Topics in Artificial Intelligence.

[17]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[18]  Fabio Gagliardi Cozman,et al.  Truncated Gaussians as tolerance sets , 1994 .

[19]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[20]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[21]  David Poole,et al.  Probabilistic Conflicts in a Search Algorithm for Estimating Posterior Probabilities in Bayesian Networks , 1996, Artif. Intell..

[22]  S. Muggleton Stochastic Logic Programs , 1996 .

[23]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[24]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[25]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[26]  De Raedt,et al.  Advances in Inductive Logic Programming , 1996 .

[27]  David Poole,et al.  The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty , 1997, Artif. Intell..

[28]  David Maxwell Chickering,et al.  A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.

[29]  David Poole,et al.  Probabilistic Partial Evaluation: Exploiting Rule Structure in Probabilistic Inference , 1997, IJCAI.

[30]  Randy Goebel,et al.  Computational intelligence - a logical approach , 1998 .

[31]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[32]  David Poole,et al.  Learning, Bayesian Probability, Graphical Models, and Abduction , 2000 .

[33]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[34]  David Poole,et al.  Abducing through negation as failure: stable models within the independent choice logic , 2000, J. Log. Program..

[35]  Peter A. Flach,et al.  Abduction and induction: essays on their relation and integration , 2000 .

[36]  Sebastian Thrun,et al.  Towards programming tools for robots that integrate probabilistic computation and learning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[37]  Avi Pfeffer,et al.  IBAL: A Probabilistic Rational Programming Language , 2001, IJCAI.

[38]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[39]  Adnan Darwiche,et al.  Recursive conditioning , 2001, Artif. Intell..

[40]  David Andre,et al.  State abstraction for programmable reinforcement learning agents , 2002, AAAI/IAAI.

[41]  Stuart J. Russell,et al.  Identity Uncertainty and Citation Matching , 2002, NIPS.

[42]  Vladimir Lifschitz,et al.  Answer set programming and plan generation , 2002, Artif. Intell..

[43]  David Allen,et al.  New Advances in Inference by Recursive Conditioning , 2002, UAI.

[44]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[45]  Francisco Javier Díez,et al.  Efficient computation for the noisy MAX , 2003, Int. J. Intell. Syst..

[46]  Nevin Lianwen Zhang,et al.  Exploiting Contextual Independence In Probabilistic Inference , 2011, J. Artif. Intell. Res..

[47]  K. Vind A foundation for statistics , 2003 .

[48]  Adnan Darwiche,et al.  Uncertainty in artificial intelligence : proceedings of the nineteenth conference (2003), August 7-10, 2003, Acapulco, Mexico , 2003 .

[49]  David Heckerman,et al.  Probabilistic Models for Relational Data , 2004 .

[50]  Stuart J. Russell,et al.  BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.

[51]  Dan Roth,et al.  Lifted First-Order Probabilistic Inference , 2005, IJCAI.

[52]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[53]  Prakash P. Shenoy,et al.  Inference in hybrid Bayesian networks with mixtures of truncated exponentials , 2006, Int. J. Approx. Reason..

[54]  Manfred Jaeger,et al.  Compiling relational Bayesian networks for exact inference , 2006, Int. J. Approx. Reason..

[55]  Ben Taskar,et al.  Bayesian Logic Programming: Theory and Tool , 2007 .

[56]  Luc De Raedt,et al.  Bayesian Logic Programming: Theory and Tool , 2007 .

[57]  David Poole,et al.  Logical Generative Models for Probabilistic Reasoning about Existence, Roles and Identity , 2007, AAAI.

[58]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[59]  R. Mike Cameron-Jones,et al.  Induction of logic programs: FOIL and related systems , 1995, New Generation Computing.

[60]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[61]  Krzysztof R. Apt,et al.  Acyclic programs , 2009, New Generation Computing.

[62]  David Poole,et al.  Logic programming, abduction and probability , 1993, New Generation Computing.

[63]  J. Nelson Rushton,et al.  Probabilistic reasoning with answer sets , 2004, Theory and Practice of Logic Programming.