Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review).

Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike in normal cells, glycolysis is enhanced and OXPHOS capacity is reduced in various cancer cells. It has long been believed that the glycolytic phenotype in cancer is due to a permanent impairment of mitochondrial OXPHOS, as proposed by Otto Warburg. This view is challenged by recent investigations which find that the function of mitochondrial OXPHOS in most cancers is intact. Aerobic glycolysis in many cancers is the combined result of various factors such as oncogenes, tumor suppressors, a hypoxic microenvironment, mtDNA mutations, genetic background and others. Understanding the features and complexity of the cancer energy metabolism will help to develop new approaches in early diagnosis and effectively target therapy of cancer.

[1]  M. Berridge,et al.  Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. , 2007, Biochimica et biophysica acta.

[2]  Pierre J Magistretti,et al.  Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. , 2011, Cell metabolism.

[3]  A. Levine,et al.  The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes , 2010, Science.

[4]  C. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[5]  P. Leder,et al.  Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. , 2006, Cancer cell.

[6]  R. Deberardinis,et al.  The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation , 2005, Oncogene.

[7]  M. Celeste Simon,et al.  The impact of O2 availability on human cancer , 2008, Nature Reviews Cancer.

[8]  Nicola Zamboni,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[9]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[10]  W. Marston Linehan,et al.  Reductive carboxylation supports growth in tumor cells with defective mitochondria , 2011, Nature.

[11]  Ming-Rong Wang,et al.  Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth , 2011, Proceedings of the National Academy of Sciences.

[12]  K. Polyak,et al.  Tumor heterogeneity: causes and consequences. , 2010, Biochimica et biophysica acta.

[13]  R. Deberardinis,et al.  The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. , 2007, Genes & development.

[14]  F. López-Ríos,et al.  Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. , 2007, Cancer research.

[15]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2009, Nature.

[16]  Andrei L Osterman,et al.  Comparative Metabolic Flux Profiling of Melanoma Cell Lines , 2011, The Journal of Biological Chemistry.

[17]  A. Weljie,et al.  Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. , 2011, The international journal of biochemistry & cell biology.

[18]  G. Garcia-Manero,et al.  K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis , 2011, Cell Research.

[19]  M. West,et al.  The Genomic Analysis of Lactic Acidosis and Acidosis Response in Human Cancers , 2008, PLoS genetics.

[20]  P. Leedman,et al.  Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. , 2002, The Biochemical journal.

[21]  Petr Ježek,et al.  Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. , 2011, The international journal of biochemistry & cell biology.

[22]  T. Copetti,et al.  Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review , 2011, Front. Pharmacol..

[23]  Adrian L Harris,et al.  Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. , 2006, Cancer research.

[24]  Matthew K. Knabel,et al.  Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1 , 2011, Cell.

[25]  J. Zhuang,et al.  p53: exercise capacity and metabolism , 2012, Current opinion in oncology.

[26]  D. Bar-Sagi,et al.  RAS oncogenes: weaving a tumorigenic web , 2011, Nature Reviews Cancer.

[27]  H. Lehrach,et al.  No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis , 2011, Oncotarget.

[28]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[29]  Keshav K. Singh,et al.  Mitochondrial impairment in p 53-deficient human cancer cells , 2003 .

[30]  G. Yancey Gillespie,et al.  Glucose Metabolism Heterogeneity in Human and Mouse Malignant Glioma Cell Lines , 2005, Journal of Neuro-Oncology.

[31]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[32]  P Vaupel,et al.  Metabolic microenvironment of tumor cells: a key factor in malignant progression. , 2010, Experimental oncology.

[33]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[34]  C. Manetti,et al.  Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. , 2006, Biochimie.

[35]  R. Deberardinis,et al.  Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. , 2009, Cancer research.

[36]  G. Brooks,et al.  Cell–cell and intracellular lactate shuttles , 2009, The Journal of physiology.

[37]  H. Koutselini,et al.  Tumour–stroma interactions in carcinogenesis: Basic aspects and perspectives , 2004, Molecular and Cellular Biochemistry.

[38]  O. Feron,et al.  Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[39]  Keshav K. Singh,et al.  Impaired OXPHOS Complex III in Breast Cancer , 2011, PloS one.

[40]  Andrei G. Vlassenko,et al.  Regional aerobic glycolysis in the human brain , 2010, Proceedings of the National Academy of Sciences.

[41]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[42]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[43]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[44]  L. Reitzer,et al.  Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. , 1979, The Journal of biological chemistry.

[45]  Emma Saavedra,et al.  Energy metabolism in tumor cells , 2007, The FEBS journal.

[46]  Z. Hall Cancer , 1906, The Hospital.

[47]  F. Sotgia,et al.  Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells , 2011, Cancer biology & therapy.

[48]  M. Choolani,et al.  Respiratory competent mitochondria in human ovarian and peritoneal cancer. , 2011, Mitochondrion.

[49]  A. Tsirigos,et al.  Ketones and lactate “fuel” tumor growth and metastasis , 2010, Cell cycle.

[50]  M.-H. Lee,et al.  Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer , 2008, Cellular and Molecular Life Sciences.

[51]  W. Wong,et al.  Hypoxia-inducible factors and the response to hypoxic stress. , 2010, Molecular cell.

[52]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[53]  P. Fortina,et al.  The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma , 2009, Cell cycle.

[54]  Robert J. Gillies,et al.  A microenvironmental model of carcinogenesis , 2008, Nature Reviews Cancer.

[55]  Jennifer E. Van Eyk,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2016 .

[56]  N. Hay,et al.  Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. , 2008, Cancer cell.

[57]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[58]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[59]  R. Hruban,et al.  P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis , 2010, Proceedings of the National Academy of Sciences.

[60]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[61]  Ge Zhou,et al.  Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells , 2011, Cancer.

[62]  B. Manning,et al.  mTOR links oncogenic signaling to tumor cell metabolism , 2011, Journal of Molecular Medicine.

[63]  M. Guppy,et al.  Cancer metabolism: facts, fantasy, and fiction. , 2004, Biochemical and biophysical research communications.

[64]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[65]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[66]  Keshav K. Singh,et al.  Genetic insights into OXPHOS defect and its role in cancer. , 2011, Biochimica et biophysica acta.

[67]  M. Yuneva Finding an “Achilles’ heel” of cancer: The role of glucose and glutamine metabolism in the survival of transformed cells , 2008, Cell cycle.

[68]  P. Bénit,et al.  AIF deficiency compromises oxidative phosphorylation , 2004, The EMBO journal.

[69]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[70]  Patries M Herst,et al.  Metabolic flexibility and cell hierarchy in metastatic cancer. , 2010, Mitochondrion.

[71]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[72]  R. Rossignol,et al.  Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? , 2011, Biochimica et biophysica acta.

[73]  Keshav K. Singh,et al.  Mitochondrial impairment in p53-deficient human cancer cells. , 2003, Mutagenesis.

[74]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[75]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[76]  R. Moreno-Sánchez,et al.  Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. , 2010, The international journal of biochemistry & cell biology.

[77]  Wenzhe Ma,et al.  A pivotal role for p53: balancing aerobic respiration and glycolysis , 2007, Journal of bioenergetics and biomembranes.

[78]  Gary Box,et al.  Small-Molecule Activation of p53 Blocks Hypoxia-Inducible Factor 1α and Vascular Endothelial Growth Factor Expression In Vivo and Leads to Tumor Cell Apoptosis in Normoxia and Hypoxia , 2009, Molecular and Cellular Biology.

[79]  P. Devilee,et al.  The Warburg effect in 2012 , 2012, Current opinion in oncology.

[80]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.