Fast algorithms for min independent dominating set

We first devise a branching algorithm that computes a minimum independent dominating set with running time O^*(1.3351^n)=O^*(2^0^.^4^1^7^n) and polynomial space. This improves upon the best state of the art algorithms for this problem. We then study approximation of the problem by moderately exponential time algorithms and show that it can be approximated within ratio [email protected], for any @e>0, in a time smaller than the one of exact computation and exponentially decreasing with @e. We also propose approximation algorithms with better running times for ratios greater than 3 in general graphs and give improved moderately exponential time approximation results in triangle-free and bipartite graphs. These latter results are based upon a new bound on the number of maximal independent sets of a given size in these graphs, which is a result interesting per se.

[1]  Sriram V. Pemmaraju,et al.  Hardness of Approximating Independent Domination in Circle Graphs , 1999, ISAAC.

[2]  Serge Gaspers,et al.  An Exponential Time 2-Approximation Algorithm for Bandwidth , 2009, IWPEC.

[3]  Vangelis Th. Paschos,et al.  Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 280 Efficient Approximation of Min Coloring by Moderately Exponential Algorithms Efficient Approximation of Min Coloring by Moderately Exponential Algorithms , 2008 .

[4]  Paola Alimonti Non-oblivious Local Search for MAX 2-CCSP with Application to MAX DICUT , 1997, WG.

[5]  J. Moon,et al.  On cliques in graphs , 1965 .

[6]  Vangelis Th. Paschos,et al.  Efficient approximation of min set cover by moderately exponential algorithms , 2009, Theor. Comput. Sci..

[7]  Hans L. Bodlaender,et al.  Exact algorithms for dominating set , 2011, Discret. Appl. Math..

[8]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[9]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[10]  Jesper Makholm Byskov Enumerating maximal independent sets with applications to graph colouring , 2004, Oper. Res. Lett..

[11]  Vangelis Th. Paschos,et al.  Completeness in differential approximation classes , 2005, Int. J. Found. Comput. Sci..

[12]  Magnús M. Halldórsson,et al.  Approximating the Minimum Maximal Independence Number , 1993, Inf. Process. Lett..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Vangelis Th. Paschos,et al.  Fast Algorithms for max independent set , 2010, Algorithmica.

[15]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[16]  Liming Cai,et al.  Fixed-Parameter Approximation: Conceptual Framework and Approximability Results , 2006, IWPEC.

[17]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[18]  Marc Demange,et al.  On an Approximation Measure Founded on the Links Between Optimization and Polynomial Approximation Theory , 1996, Theor. Comput. Sci..

[19]  Vangelis Th. Paschos,et al.  Efficient Approximation of Combinatorial Problems by Moderately Exponential Algorithms , 2009, WADS.

[20]  Marek Cygan,et al.  Exponential-time approximation of weighted set cover , 2009, Inf. Process. Lett..

[21]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[22]  Tiziana Calamoneri,et al.  Improved Approximations of Independent Dominating Set in Bounded Degree Graphs , 1996, WG.

[23]  Zsolt Tuza,et al.  The Number of Maximal Independent Sets in Triangle-Free Graphs , 1993, SIAM J. Discret. Math..

[24]  Marcin Pilipczuk,et al.  Exact and approximate bandwidth , 2009, Theor. Comput. Sci..

[25]  Viggo Kann,et al.  Polynomially Bounded Minimization Problems That Are Hard to Approximate , 1993, Nord. J. Comput..

[26]  Vangelis Th. Paschos,et al.  Fast Algorithms for min independent dominating set , 2010, SIROCCO.

[27]  Mathieu Liedloff,et al.  A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set , 2012, Discret. Math. Theor. Comput. Sci..

[28]  Vangelis Th. Paschos,et al.  Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms , 2011, Discret. Appl. Math..