Recent Results on Douglas–Rachford Methods

Recent positive experiences applying convex feasibility algo- rithms of Douglas-Rachford type to highly combinatorial and far from con- vex problems are described.

[1]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[4]  V. Rich Personal communication , 1989, Nature.

[5]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[6]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[7]  N. Ueda,et al.  NP-completeness Results for NONOGRAM via Parsimonious Reductions , 1996 .

[8]  Samuel Y. Edgerton Painting by numbers , 1997, Nature.

[9]  Heinz H. Bauschke,et al.  Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[11]  T. Yato,et al.  Complexity and Completeness of Finding Another Solution and Its Application to Puzzles , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[12]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[14]  V. Elser,et al.  Deconstructing the energy landscape: constraint-based algorithms for folding heteropolymers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Toby Walsh,et al.  Tetravex is NP-complete , 2006, Inf. Process. Lett..

[16]  Richard Hamilton,et al.  Painting by Numbers , 2007 .

[17]  V Elser,et al.  Searching with iterated maps , 2007, Proceedings of the National Academy of Sciences.

[18]  Veit Elser,et al.  Divide and concur: a general approach to constraint satisfaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jason Schaad Modeling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex sets , 2010 .

[20]  Jonathan M. Borwein,et al.  The Douglas-Rachford Algorithm in the Absence of Convexity , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[21]  W. Bragg,et al.  MAXIMUM ENTROPY AND FEASIBILITY METHODS FOR CONVEX AND NONCONVEX INVERSE PROBLEMS , 2011 .

[22]  Jan N. van Rijn Playing Games: The complexity of Klondike, Mahjong, Nonograms and Animal Chess , 2012 .

[23]  D. Russell Luke,et al.  Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..

[24]  Jonathan M. Borwein,et al.  Global convergence of a non-convex Douglas–Rachford iteration , 2012, J. Glob. Optim..

[25]  Jonathan M. Borwein,et al.  Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..

[26]  Matthew K. Tam,et al.  DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS , 2013, The ANZIAM Journal.

[27]  Jonathan M. Borwein,et al.  A Cyclic Douglas–Rachford Iteration Scheme , 2013, J. Optim. Theory Appl..

[28]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.