An adaptive genetic algorithm for crystal structure prediction

We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.

[1]  P. Brommer,et al.  Effective potentials for quasicrystals from ab-initio data , 2006, 0704.0163.

[2]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[3]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[4]  D. Cromer,et al.  The Structures of Anatase and Rutile , 1955 .

[5]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[6]  J. C. Schön,et al.  Global exploration of the energy landscape of solids on the ab initio level. , 2007, Physical chemistry chemical physics : PCCP.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[9]  John Maddox,et al.  Waves caused by extreme dilution , 1988, Nature.

[10]  J. Tsuchiya,et al.  Phase transition in MgSiO3 perovskite in the earth’s lower mantle , 2004 .

[11]  L. T. Wille,et al.  Searching potential energy surfaces by simulated annealing , 1986, Nature.

[12]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[13]  A. Oganov,et al.  Evolutionary crystal structure prediction as a tool in materials design , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  J. Tsuchiya,et al.  Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures , 2011, Proceedings of the National Academy of Sciences.

[15]  Roy L. Johnston,et al.  The genetic algorithm : Foundations and applications in structure solution from powder diffraction data , 1998 .

[16]  Renata M. Wentzcovitch,et al.  Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.

[17]  Graeme Ackland,et al.  Structure and elasticity of MgO at high pressure , 1997 .

[18]  M E Eberhart,et al.  Looking for design in materials design , 2004, Nature materials.

[19]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  F. Marumo,et al.  The crystal structure of Zn2SiO4-II, a high-pressure phase of willemite , 1971 .

[22]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[23]  Lnrr B. B. K,et al.  Structure and elasticity of MgO at high pressure , 2007 .

[24]  M. Mehl,et al.  Linearized augmented plane wave electronic structure calculations for MgO and CaO , 1988 .

[25]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[26]  Scott M. Woodley,et al.  Prediction of crystal structures using evolutionary algorithms and related techniques , 2004 .

[27]  L. V. D. Phil. LV. Results of crystal analysis.—III. , 1916 .

[28]  K. Waltersson,et al.  The crystal structure of Cs[VOF3] · 12H2O , 1979 .

[29]  J. Maddox Crystals from first principles , 1988, Nature.

[30]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  G. Chin,et al.  Note on the Hf-Co phase diagram , 1978 .

[32]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[33]  L. T. Wille Searching potential energy surfaces by simulated annealing , 1987, Nature.

[34]  Artem R. Oganov,et al.  Ab initio lattice dynamics and structural stability of MgO , 2003 .

[35]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[36]  K. Ho,et al.  Identification of post-pyrite phase transitions in SiO2 by a genetic algorithm , 2011 .

[37]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[38]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[39]  Renata M. Wentzcovitch,et al.  Two-stage dissociation in MgSiO3 post-perovskite , 2011 .

[40]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[41]  Renata M. Wentzcovitch,et al.  Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm , 2011, 1108.4164.

[42]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[43]  Post-perovskite Phase Transition in MgSiO , 2022 .