Risk Averse Inventory Management ∗

Traditional inventory models focus on risk neutral decision makers, i.e., characterizing replenishment strategies that maximize expected total profit, or equivalently, minimize expected total cost over a planning horizon. In this paper, we propose a general framework for incorporating risk aversion in multi-period inventory models as well as multi-period models that coordinate inventory and pricing strategies. In each case, we characterize the optimal policy for various measures of risk that have been commonly used in the finance literature. In particular, we show that the structure of the optimal policy for a decision maker with exponential utility function is almost identical to the structure of the optimal risk neutral inventory (and pricing) policies. Computational results demonstrate the importance of this approach not only to risk averse decision makers, but also to risk neutral decision makers with limited information on the demand distribution.

[1]  Awi Federgruen,et al.  Combined Pricing and Inventory Control Under Uncertainty , 1999, Oper. Res..

[2]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Supply Chain Management , 2004, IPCO.

[3]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[4]  L. Eeckhoudt,et al.  The Risk-Averse and Prudent Newsboy , 1995 .

[5]  Anna Nagurney,et al.  Foundations of Financial Economics , 1997 .

[6]  Hon-Shiang Lau The Newsboy Problem under Alternative Optimization Objectives , 1980 .

[7]  Haim Levy,et al.  Ordering Uncertain Options with Borrowing and Lending , 1978 .

[8]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[9]  Matthew J. Sobel,et al.  Inventory Control with an Exponential Utility Criterion , 1992, Oper. Res..

[10]  D. Simchi-Levi,et al.  Mean‐variance trade‐offs in supply contracts , 2006 .

[11]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[12]  D. Bertsimas,et al.  Shortfall as a risk measure: properties, optimization and applications , 2004 .

[13]  Vipul Agrawal,et al.  Impact of Uncertainty and Risk Aversion on Price and Order Quantity in the Newsvendor Problem , 2000, Manuf. Serv. Oper. Manag..

[14]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[15]  Gérard P. Cachon,et al.  Decision Bias in the Newsvendor Problem with a Known Demand Distribution: Experimental Evidence.: Experimental Evidence. , 2000 .

[16]  A. Vries Value at Risk , 2019, Derivatives.

[17]  H. Levy Stochastic dominance and expected utility: survey and analysis , 1992 .

[18]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[19]  Xin Chen,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost , 2003, Manuf. Serv. Oper. Manag..

[20]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .

[21]  Xin Chen,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case , 2004, Oper. Res..

[22]  David Simchi-Levi,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Infinite Horizon Case , 2004, Math. Oper. Res..