Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site.

BACKGROUND Aminoglycoside antibiotics interfere with translation in both gram-positive and gram-negative bacteria by binding to the tRNA decoding A site of the 16S ribosomal RNA. RESULTS Crystals of complexes between oligoribonucleotides incorporating the sequence of the ribosomal A site of Escherichia coli and the aminoglycoside paromomycin have been solved at 2.5 A resolution. Each RNA fragment contains two A sites inserted between Watson-Crick pairs. The paromomycin molecules interact in an enlarged deep groove created by two bulging and one unpaired adenines. In both sites, hydroxyl and ammonium side chains of the antibiotic form 13 direct hydrogen bonds to bases and backbone atoms of the A site. In the best-defined site, 8 water molecules mediate 12 other hydrogen bonds between the RNA and the antibiotics. Ring I of paromomycin stacks over base G1491 and forms pseudo-Watson-Crick contacts with A1408. Both the hydroxyl group and one ammonium group of ring II form direct and water-mediated hydrogen bonds to the U1495oU1406 pair. The bulging conformation of the two adenines A1492 and A1493 is stabilized by hydrogen bonds between phosphate oxygens and atoms of rings I and II. The hydrophilic sites of the bulging A1492 and A1493 contact the shallow groove of G=C pairs in a symmetrical complex. CONCLUSIONS Water molecules participate in the binding specificity by exploiting the antibiotic hydration shell and the typical RNA water hydration patterns. The observed contacts rationalize the protection, mutation, and resistance data. The crystal packing mimics the intermolecular contacts induced by aminoglycoside binding in the ribosome.

[1]  G. Wright,et al.  Aminoglycoside antibiotics. Structures, functions, and resistance. , 1998, Advances in experimental medicine and biology.

[2]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Harvey,et al.  Major groove binding of the tRNA/mRNA complex to the 16 S ribosomal RNA decoding site. , 1999, Journal of molecular biology.

[4]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[5]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[6]  Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches. , 1998, Journal of molecular biology.

[7]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[8]  E. Westhof,et al.  Aminoglycoside-RNA interactions. , 1999, Current opinion in chemical biology.

[9]  S. Stern,et al.  Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit , 1994, Nature.

[10]  J. Puglisi,et al.  Structural origins of gentamicin antibiotic action , 1998, The EMBO journal.

[11]  D. Patel,et al.  Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. , 1997, Chemistry & biology.

[12]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[13]  Jennifer A. Doudna,et al.  A universal mode of helix packing in RNA , 2001, Nature Structural Biology.

[14]  J. Puglisi,et al.  Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[15]  J. Puglisi,et al.  Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[16]  W D Wilson,et al.  Targeting RNA with small molecules. , 2000, Current medicinal chemistry.

[17]  J. Puglisi,et al.  Basis for prokaryotic specificity of action of aminoglycoside antibiotics , 1999, The EMBO journal.

[18]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[19]  J. Puglisi,et al.  rRNA chemical groups required for aminoglycoside binding. , 1998, Biochemistry.

[20]  L. Pannell,et al.  6-Aza-2-thiothymine: a matrix for MALDI spectra of oligonucleotides. , 1995, Nucleic acids research.

[21]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[22]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[23]  S. Yokoyama,et al.  An antibiotic-binding motif of an RNA fragment derived from the A-site-related region of Escherichia coli 16S rRNA. , 1996, Nucleic acids research.

[24]  K. Waltersson,et al.  The crystal structure of Cs[VOF3] · 12H2O , 1979 .

[25]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[26]  I. Siemion,et al.  New hypothesis on amino acid complementarity and its evaluation on TGF‐β2‐related peptides , 2001, Journal of molecular recognition : JMR.

[27]  G J Kleywegt,et al.  Where freedom is given, liberties are taken. , 1995, Structure.

[28]  E Westhof,et al.  Water and ion binding around RNA and DNA (C,G) oligomers. , 2000, Journal of molecular biology.

[29]  Philip R. Evans,et al.  Crystal structure of the spliceosomal U2B″–U2A′ protein complex bound to a fragment of U2 small nuclear RNA , 1998, Nature.

[30]  E. Westhof,et al.  RNA tectonics: towards RNA design. , 1996, Folding & design.

[31]  E. Westhof,et al.  Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. , 1998, Journal of molecular biology.

[32]  E Westhof,et al.  Conserved geometrical base-pairing patterns in RNA , 1998, Quarterly Reviews of Biophysics.

[33]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[34]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[35]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[36]  E Westhof,et al.  Docking of cationic antibiotics to negatively charged pockets in RNA folds. , 1999, Journal of medicinal chemistry.

[37]  G J Kleywegt,et al.  Model building and refinement practice. , 1997, Methods in enzymology.

[38]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[39]  Hermann Strategies for the Design of Drugs Targeting RNA and RNA-Protein Complexes. , 2000, Angewandte Chemie.

[40]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[41]  E. Cundliffe,et al.  Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. , 1987, Journal of molecular biology.

[42]  E. Westhof,et al.  RNA folding: beyond Watson-Crick pairs. , 2000, Structure.

[43]  S V Evans,et al.  SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.

[44]  C Massire,et al.  MANIP: an interactive tool for modelling RNA. , 1998, Journal of molecular graphics & modelling.

[45]  C. Ehresmann,et al.  The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. , 1999, Structure.

[46]  J. Puglisi,et al.  Recognition of the codon-anticodon helix by ribosomal RNA. , 1999, Science.

[47]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[48]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[49]  C. Wong,et al.  Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. , 1998, Chemistry & biology.

[50]  J Davies,et al.  Bacterial resistance to aminoglycoside antibiotics. , 1997, The Journal of infectious diseases.

[51]  R. Green,et al.  Ribosomal Rna and Group I Introns , 1996 .

[52]  B. Coxon,et al.  Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides , 1983 .

[53]  E. Westhof,et al.  Hydration of transfer RNA molecules: a crystallographic study. , 1988, Biochimie.

[54]  J. Davies,et al.  Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. , 1968, The Journal of biological chemistry.

[55]  C Massire,et al.  DRAWNA: a program for drawing schematic views of nucleic acids. , 1994, Journal of molecular graphics.

[56]  S. Mobashery,et al.  Resolving the antibiotic paradox: progress in understanding drug resistance and development of new antibiotics. , 1998 .

[57]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[58]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[59]  J. Puglisi,et al.  RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. , 1996, Journal of molecular biology.

[60]  Batey,et al.  Tertiary Motifs in RNA Structure and Folding. , 1999, Angewandte Chemie.

[61]  E Westhof,et al.  Statistical analysis of atomic contacts at RNA–protein interfaces , 2001, Journal of molecular recognition : JMR.

[62]  U Heinemann,et al.  Crystal structure of an RNA dodecamer containing the Escherichia coli Shine-Dalgarno sequence. , 1995, Journal of molecular biology.

[63]  T. Steitz,et al.  Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP. , 1996, Biochemistry.