Symmetrical Solutions for Edge-Loaded Annular Elastic Membranes

The Foppl–Hencky nonlinear membrane theory is employed to study the axisymmetric deformation of annular elastic membranes. The general solutions for displacements and stresses are established for arbitrary edge boundary conditions. New exact solution results are developed for central loading and edge forcing conditions. Both positive and negative radial stress solutions are found. Comparisons are made for special cases to previously known solutions with excellent agreement.

[1]  J D Humphrey,et al.  Redistribution of stress due to a circular hole in a nonlinear anisotropic membrane. , 2004, Journal of biomechanics.

[2]  J. K. Dienes,et al.  A membrane model for the response of thin plates to ballistic impact , 1977 .

[3]  J. Humphrey,et al.  Stress distribution in a circular membrane with a central fixation. , 2005, Journal of biomechanical engineering.

[4]  T. Kármán Festigkeitsprobleme im Maschinenbau , 1907 .

[5]  Christopher Y. Tuan Ponding on circular membranes , 1998 .

[6]  T. Mackin,et al.  Spherical indentation of freestanding circular thin films in the membrane regime , 2004 .

[7]  Thomas J. Mackin,et al.  Indentation of freestanding circular elastomer films using spherical indenters , 2004 .

[8]  H. Keller,et al.  Membrane buckling: A study of solution multiplicity , 1971 .

[9]  John A. Pelesko,et al.  Electrostatic deflections of circular elastic membranes , 2003 .

[10]  R. W. Dickey The nonlinear circular membrane under a vertical force , 1983 .

[11]  R. W. Dickey The plane circular elastic surface under normal pressure , 1967 .

[12]  E. Meister,et al.  On finite displacements of circular elastic membranes , 1987 .

[13]  Nonlinear boundary value problems for the annular membrane: A note on uniqueness of positive solutions , 1987 .

[14]  I. Raju,et al.  Large deflections of circular isotropic membranes subjected to arbitrary axisymmetric loading , 1985 .

[15]  Ya-Peng Shen,et al.  Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending , 1996 .

[16]  H. Grabmüller,et al.  Wrinkle-free solutions of circular membrane problems , 1992 .

[17]  H. J. Weinitschke On Axisymmetric Deformations of Nonlinear Elastic Membranes , 1980 .

[18]  T. Wierzbicki,et al.  Large deformation of thin plates under localised impulsive loading , 1996 .

[19]  Wei H. Yang,et al.  Indentation of a Circular Membrane , 1971 .

[20]  S. Cheng,et al.  Non-linear analysis of prestretched circular membrane and a modified iteration technique , 1996 .

[21]  Edward L. Reiss,et al.  Non-linear boundary value problems for the circular membrane , 2018 .