LRA: Local Rigid Averaging of Stretchable Non-rigid Shapes

We present a novel algorithm for generating the mean structure of non-rigid stretchable shapes. Following an alignment process, which supports local affine deformations, we translate the search of the mean shape into a diagonalization problem where the structure is hidden within the kernel of a matrix. This is the first step required in many practical applications, where one needs to model bendable and stretchable shapes from multiple observations.

[1]  R. Kimmel,et al.  Affine invariant non-rigid shape analysis , 2012 .

[2]  Roi Poranne,et al.  Biharmonic Coordinates , 2012, Comput. Graph. Forum.

[3]  L. Younes,et al.  Diffeomorphometry and geodesic positioning systems for human anatomy. , 2014, Technology.

[4]  Martin Bauer,et al.  Overview of the Geometries of Shape Spaces and Diffeomorphism Groups , 2013, Journal of Mathematical Imaging and Vision.

[5]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[6]  Sen Wang,et al.  High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.

[7]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[8]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[9]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[10]  Michael Garland,et al.  Free-form motion processing , 2008, TOGS.

[11]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[12]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[13]  Alexander M. Bronstein,et al.  Nonlinear Dimensionality Reduction by Topologically Constrained Isometric Embedding , 2010, International Journal of Computer Vision.

[14]  CurlessBrian,et al.  The space of human body shapes , 2003 .

[15]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ron Kimmel,et al.  Scale Invariant Geometry for Nonrigid Shapes , 2013, SIAM J. Imaging Sci..

[17]  Davide Eynard,et al.  Shape‐from‐Operator: Recovering Shapes from Intrinsic Operators , 2015, Comput. Graph. Forum.

[18]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[19]  Fillia Makedon,et al.  Surface Alignment of 3D Spherical Harmonic Models: Application to Cardiac MRI Analysis , 2005, MICCAI.

[20]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[21]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[22]  Martin Rumpf,et al.  Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.

[23]  Amit Singer,et al.  A remark on global positioning from local distances , 2008, Proceedings of the National Academy of Sciences.

[24]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[25]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[26]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[27]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[28]  K. Nomizu Affine Differential Geometry , 1994 .

[29]  A. Alfakih On rigidity and realizability of weighted graphs , 2001 .

[30]  Jon M. Kleinberg,et al.  Reconstructing a three-dimensional model with arbitrary errors , 1996, STOC '96.

[31]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[32]  A. Gámez,et al.  Nonlinear dimensionality reduction in climate data , 2004 .

[33]  Xiang Ji,et al.  Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling , 2004, IEEE INFOCOM 2004.

[34]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[35]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[36]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[37]  Ramesh Raskar,et al.  Scale Invariant Metrics of Volumetric Datasets , 2015, SIAM J. Imaging Sci..

[38]  Alexander M. Bronstein,et al.  Equi-affine Invariant Geometry for Shape Analysis , 2013, Journal of Mathematical Imaging and Vision.

[39]  Geert Leus,et al.  Extending the Classical Multidimensional Scaling Algorithm Given Partial Pairwise Distance Measurements , 2010, IEEE Signal Processing Letters.

[40]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[41]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[42]  Anuj Srivastava,et al.  Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.

[43]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[44]  Wilhelm Blaschke,et al.  Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .

[45]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Raviv Diffusion symmetries of non-rigid shapes , 2010 .

[47]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[48]  A. Ben Hamza,et al.  Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.

[49]  Ron Kimmel,et al.  Affine Invariant Geometry for Non-rigid Shapes , 2014, International Journal of Computer Vision.

[50]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[51]  Alexander M. Bronstein,et al.  On reconstruction of non-rigid shapes with intrinsic regularization , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[52]  Guido Gerig,et al.  Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data , 2012, International Journal of Computer Vision.

[53]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Ron Kimmel,et al.  Iterative Closest Spectral Kernel Maps , 2014, 2014 2nd International Conference on 3D Vision.

[55]  M. Ben-Chen,et al.  Variational harmonic maps for space deformation , 2009, SIGGRAPH 2009.

[56]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[57]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[58]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[59]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[60]  Radu Horaud,et al.  3D Shape Registration Using Spectral Graph Embedding and Probabilistic Matching , 2012, ArXiv.

[61]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[62]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004 .

[63]  Henry Wolkowicz,et al.  Two theorems on Euclidean distance matrices and Gale transform , 2002 .

[64]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[65]  Alexander M. Bronstein,et al.  Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis , 2011, ArXiv.

[66]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[67]  Rama Chellappa,et al.  Differential geometric representations and algorithms for some pattern recognition and computer vision problems , 2014, Pattern Recognit. Lett..

[68]  Su Buqing,et al.  Affine differential geometry , 1983 .

[69]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[70]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[71]  William A. P. Smith,et al.  Manifold-based constraints for operations in face space , 2016, Pattern Recognit..