LRA: Local Rigid Averaging of Stretchable Non-rigid Shapes
暂无分享,去创建一个
[1] R. Kimmel,et al. Affine invariant non-rigid shape analysis , 2012 .
[2] Roi Poranne,et al. Biharmonic Coordinates , 2012, Comput. Graph. Forum.
[3] L. Younes,et al. Diffeomorphometry and geodesic positioning systems for human anatomy. , 2014, Technology.
[4] Martin Bauer,et al. Overview of the Geometries of Shape Spaces and Diffeomorphism Groups , 2013, Journal of Mathematical Imaging and Vision.
[5] Zoran Popovic,et al. The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..
[6] Sen Wang,et al. High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.
[7] P. Bérard,et al. Embedding Riemannian manifolds by their heat kernel , 1994 .
[8] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[9] Peter Schröder,et al. Consistent mesh parameterizations , 2001, SIGGRAPH.
[10] Michael Garland,et al. Free-form motion processing , 2008, TOGS.
[11] Bruce Fischl,et al. Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.
[12] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[13] Alexander M. Bronstein,et al. Nonlinear Dimensionality Reduction by Topologically Constrained Isometric Embedding , 2010, International Journal of Computer Vision.
[14] CurlessBrian,et al. The space of human body shapes , 2003 .
[15] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[16] Ron Kimmel,et al. Scale Invariant Geometry for Nonrigid Shapes , 2013, SIAM J. Imaging Sci..
[17] Davide Eynard,et al. Shape‐from‐Operator: Recovering Shapes from Intrinsic Operators , 2015, Comput. Graph. Forum.
[18] Jovan Popović,et al. Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.
[19] Fillia Makedon,et al. Surface Alignment of 3D Spherical Harmonic Models: Application to Cardiac MRI Analysis , 2005, MICCAI.
[20] Alexander M. Bronstein,et al. Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.
[21] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[22] Martin Rumpf,et al. Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.
[23] Amit Singer,et al. A remark on global positioning from local distances , 2008, Proceedings of the National Academy of Sciences.
[24] Alla Sheffer,et al. Pyramid coordinates for morphing and deformation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..
[25] Joshua B. Tenenbaum,et al. Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.
[26] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[27] P. Thomas Fletcher,et al. Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.
[28] K. Nomizu. Affine Differential Geometry , 1994 .
[29] A. Alfakih. On rigidity and realizability of weighted graphs , 2001 .
[30] Jon M. Kleinberg,et al. Reconstructing a three-dimensional model with arbitrary errors , 1996, STOC '96.
[31] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[32] A. Gámez,et al. Nonlinear dimensionality reduction in climate data , 2004 .
[33] Xiang Ji,et al. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling , 2004, IEEE INFOCOM 2004.
[34] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[35] Timothy F. Cootes,et al. A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.
[36] Leonidas J. Guibas,et al. One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.
[37] Ramesh Raskar,et al. Scale Invariant Metrics of Volumetric Datasets , 2015, SIAM J. Imaging Sci..
[38] Alexander M. Bronstein,et al. Equi-affine Invariant Geometry for Shape Analysis , 2013, Journal of Mathematical Imaging and Vision.
[39] Geert Leus,et al. Extending the Classical Multidimensional Scaling Algorithm Given Partial Pairwise Distance Measurements , 2010, IEEE Signal Processing Letters.
[40] Alain Trouvé,et al. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.
[41] K. Hormann,et al. Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.
[42] Anuj Srivastava,et al. Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.
[43] Bruce Hendrickson,et al. Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..
[44] Wilhelm Blaschke,et al. Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .
[45] Ron Kimmel,et al. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[46] D. Raviv. Diffusion symmetries of non-rigid shapes , 2010 .
[47] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[48] A. Ben Hamza,et al. Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.
[49] Ron Kimmel,et al. Affine Invariant Geometry for Non-rigid Shapes , 2014, International Journal of Computer Vision.
[50] Michael C. Hout,et al. Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.
[51] Alexander M. Bronstein,et al. On reconstruction of non-rigid shapes with intrinsic regularization , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.
[52] Guido Gerig,et al. Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data , 2012, International Journal of Computer Vision.
[53] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[54] Ron Kimmel,et al. Iterative Closest Spectral Kernel Maps , 2014, 2014 2nd International Conference on 3D Vision.
[55] M. Ben-Chen,et al. Variational harmonic maps for space deformation , 2009, SIGGRAPH 2009.
[56] L. Younes,et al. Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.
[57] Jovan Popovic,et al. Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..
[58] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..
[59] Bruce Hendrickson,et al. The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..
[60] Radu Horaud,et al. 3D Shape Registration Using Spectral Graph Embedding and Probabilistic Matching , 2012, ArXiv.
[61] Ron Kimmel,et al. Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[62] Alla Sheffer,et al. Pyramid coordinates for morphing and deformation , 2004 .
[63] Henry Wolkowicz,et al. Two theorems on Euclidean distance matrices and Gale transform , 2002 .
[64] Leonidas J. Guibas,et al. Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..
[65] Alexander M. Bronstein,et al. Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis , 2011, ArXiv.
[66] Raif M. Rustamov,et al. Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .
[67] Rama Chellappa,et al. Differential geometric representations and algorithms for some pattern recognition and computer vision problems , 2014, Pattern Recognit. Lett..
[68] Su Buqing,et al. Affine differential geometry , 1983 .
[69] Hao Li,et al. Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.
[70] Alexander M. Bronstein,et al. Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.
[71] William A. P. Smith,et al. Manifold-based constraints for operations in face space , 2016, Pattern Recognit..