A review of demodulation techniques for multifrequency atomic force microscopy

This article compares the performance of traditional and recently proposed demodulators for multifrequency atomic force microscopy. The compared methods include the lock-in amplifier, coherent demodulator, Kalman filter, Lyapunov filter, and direct-design demodulator. Each method is implemented on a field-programmable gate array (FPGA) with a sampling rate of 1.5 MHz. The metrics for comparison include the sensitivity to other frequency components and the magnitude of demodulation artifacts for a range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy imaging.

[1]  S. O. Reza Moheimani,et al.  Frequency domain analysis of robust demodulators for high-speed atomic force microscopy , 2017, 2017 American Control Conference (ACC).

[2]  Robert W. Stark,et al.  Higher harmonics imaging in tapping-mode atomic-force microscopy , 2003 .

[3]  D. Haviland,et al.  Imaging high-speed friction at the nanometer scale , 2016, Nature Communications.

[4]  Charles Kitchin and Lew Counts RMS to DC conversion application guide , 2016 .

[5]  C R Cosens,et al.  A balance-detector for alternating-current bridges , 1934 .

[6]  A. Engel,et al.  Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. , 1999, Biophysical journal.

[7]  Robert Forchheimer,et al.  Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy , 2015, Nature Communications.

[8]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[9]  Javier Tamayo,et al.  Piconewton regime dynamic force microscopy in liquid , 2000 .

[10]  M. S. Grewal,et al.  Application of Kalman filtering to the calibration and alignment of inertial navigation systems , 1991 .

[11]  Michael G. Ruppert,et al.  A review of demodulation techniques for amplitude-modulation atomic force microscopy , 2017, Beilstein journal of nanotechnology.

[12]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[13]  Ricardo Garcia,et al.  Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. , 2019, Nanoscale.

[14]  Jan Tommy Gravdahl,et al.  On Amplitude Estimation for High-Speed Atomic Force Microscopy , 2016, 2016 American Control Conference (ACC).

[15]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[17]  S. Y. Chen,et al.  Kalman Filter for Robot Vision: A Survey , 2012, IEEE Transactions on Industrial Electronics.

[18]  Michael G. Ruppert,et al.  High-Bandwidth Demodulation in MF-AFM: A Kalman Filtering Approach , 2016, IEEE/ASME Transactions on Mechatronics.

[19]  Adly A. Girgis,et al.  Optimal Estimation of Voltage Phasors and Frequency Deviation Using Linear and Nonlinear Kalman Filtering: Theory and Limitations , 1984, IEEE Power Engineering Review.

[20]  S. O. Reza Moheimani,et al.  A Kalman Filter for Amplitude Estimation in High-Speed Dynamic Mode Atomic Force Microscopy , 2016, IEEE Transactions on Control Systems Technology.

[21]  Jan Tommy Gravdahl,et al.  Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy , 2018, IEEE Transactions on Control Systems Technology.

[22]  E. Tholén,et al.  Note: The intermodulation lockin analyzer. , 2010, The Review of scientific instruments.

[23]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[24]  P. Heszler,et al.  Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope , 2006, Nanotechnology.

[25]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[26]  Martin Stark,et al.  Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction , 2000 .

[27]  Andrew J. Fleming,et al.  Higher-harmonic AFM imaging with a high-bandwidth multifrequency Lyapunov filter , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[28]  D. Haviland,et al.  Determining surface properties with bimodal and multimodal AFM , 2014, Nanotechnology.

[29]  Harold S. Johnston,et al.  Digital Phase Sensitive Detector , 1968 .

[30]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[31]  Arvind Raman,et al.  Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope , 2015, Scientific Reports.

[32]  E. Tholén,et al.  Phase imaging with intermodulation atomic force microscopy. , 2009, Ultramicroscopy.

[33]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[34]  Michael G. Ruppert,et al.  Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy , 2018, Beilstein journal of nanotechnology.

[35]  Daniel Platz,et al.  Intermodulation atomic force microscopy , 2008 .

[36]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[37]  E. Nauman,et al.  Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. , 2011, Nature nanotechnology.

[38]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[39]  Daniel Y. Abramovitch Low Latency Demodulation for Atomic Force Microscopes, Part II: Efficient Calculation of Magnitude and Phase , 2011 .

[40]  Jilin Tang,et al.  Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. , 2007, Physical review letters.

[41]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[42]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[43]  Ricardo Garcia,et al.  Nanomechanical mapping of soft matter by bimodal force microscopy , 2013 .

[44]  Martin Lenz,et al.  Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation , 2015, Cell.

[45]  Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy , 2010 .

[46]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[47]  Walter C. Michels,et al.  A Pentode Lock‐In Amplifier of High Frequency Selectivity , 1941 .

[48]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[49]  Andrew J. Fleming,et al.  Direct Design of Closed-loop Demodulators for Amplitude Modulation Atomic Force Microscopy , 2018, 2018 Annual American Control Conference (ACC).

[50]  S. O. R. Moheimani,et al.  Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .

[51]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[52]  Yuen Kuan Yong,et al.  Design and Analysis of Low-Distortion Demodulators for Modulated Sensors , 2019, IEEE/ASME Transactions on Mechatronics.

[53]  Daniel Y. Abramovitch,et al.  Low latency demodulation for Atomic Force Microscopes, Part I efficient real-time integration , 2011, Proceedings of the 2011 American Control Conference.

[54]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[55]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[56]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[57]  Ricardo Garcia,et al.  Amplitude Modulation Atomic Force Microscopy: GARCIA:AMPLIT.MODULATION O-BK , 2010 .

[58]  Ricardo Garcia,et al.  Fast nanomechanical spectroscopy of soft matter , 2014, Nature Communications.