Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas

In this paper, we propose an analysis on the joint effect of hyperspectral and light detection and ranging (LIDAR) data for the classification of complex forest areas. In greater detail, we present: 1) an advanced system for the joint use of hyperspectral and LIDAR data in complex classification problems; 2) an investigation on the effectiveness of the very promising support vector machines (SVMs) and Gaussian maximum likelihood with leave-one-out-covariance algorithm classifiers for the analysis of complex forest scenarios characterized from a high number of species in a multisource framework; and 3) an analysis on the effectiveness of different LIDAR returns and channels (elevation and intensity) for increasing the classification accuracy obtained with hyperspectral images, particularly in relation to the discrimination of very similar classes. Several experiments carried out on a complex forest area in Italy provide interesting conclusions on the effectiveness and potentialities of the joint use of hyperspectral and LIDAR data and on the accuracy of the different classification techniques analyzed in the proposed system. In particular, the elevation channel of the first LIDAR return was very effective for the separation of species with similar spectral signatures but different mean heights, and the SVM classifier proved to be very robust and accurate in the exploitation of the considered multisource data.

[1]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[2]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .

[3]  Heiko Balzter,et al.  Estimation of tree growth in a conifer plantation over 19 years from multi-satellite L-band SAR , 2003 .

[4]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[5]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[6]  Lorenzo Bruzzone,et al.  Semisupervised Classification of Hyperspectral Images by SVMs Optimized in the Primal , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Lorenzo Bruzzone,et al.  Automatic Spectral Rule-Based Preliminary Mapping of Calibrated Landsat TM and ETM+ Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  W. Cohen,et al.  Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery , 2007 .

[9]  Roberto Manduchi,et al.  Supervised Parametric Classification of Aerial LiDAR Data , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[10]  R. Sugumaran,et al.  Object-Oriented Classification of LIDAR-Fused Hyperspectral Imagery for Tree Species Identification in an Urban Environment , 2007, 2007 Urban Remote Sensing Joint Event.

[11]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[12]  Manabu Watanabe,et al.  Forest Structure Dependency of the Relation Between L-Band$sigma^0$and Biophysical Parameters , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Nicholas Skowronski,et al.  Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey , 2007 .

[14]  I. Hajnsek,et al.  Applying polarimetric SAR interferometric data for forest classification , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[15]  Uwe Weidner,et al.  Improvements of roof surface classification using hyperspectral and laser scanning data , 2005 .

[16]  Christopher D. Elvidge,et al.  Comparison of relative radiometric normalization techniques , 1996 .

[17]  Lorenzo Bruzzone,et al.  An advanced system for the automatic classification of multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Toshiharu Kojima,et al.  Forest type classification using data fusion of multispectral and panchromatic high-resolution satellite imageries , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[19]  Jennifer L. Dungan,et al.  Forest variable estimation from fusion of SAR and multispectral optical data , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[21]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Lorenzo Bruzzone,et al.  Semisupervised Support Vector Machines for Classification of Hyperspectral Remote Sensing Images , 2006 .

[23]  D. E. Irwin,et al.  Exploitation of hyperspectral imagery and lidar for landuse classification , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[24]  D. Lemp,et al.  Segment-based characterization of roof surfaces using hyperspectral and laser scanning data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[25]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[26]  J. Friedman Regularized Discriminant Analysis , 1989 .

[27]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[28]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[29]  Fabio Maselli,et al.  Evaluation of statistical methods to estimate forest volume in a mediterranean region , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[31]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[32]  D. Leckie,et al.  Issues in species classification of trees in old growth conifer stands , 2005 .

[33]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[34]  Eric Rignot,et al.  Classification of boreal forest cover types using SAR images , 1997 .

[35]  David A. Landgrebe,et al.  Lowpass filter for increasing class separability , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[36]  R. Kronmal,et al.  Discriminant functions when covariances are unequal and sample sizes are moderate , 1977 .

[37]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[38]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[39]  Sylvain G. Leblanc,et al.  Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[42]  David A. Landgrebe,et al.  Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Peng Gong,et al.  Land cover assessment with MODIS imagery in southern African Miombo ecosystems , 2005 .

[44]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[45]  Yong Du,et al.  Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas , 2001, IEEE Trans. Geosci. Remote. Sens..

[46]  Sidney Marks,et al.  Discriminant Functions When Covariance Matrices are Unequal , 1974 .

[47]  Mary E. Martin,et al.  Determining Forest Species Composition Using High Spectral Resolution Remote Sensing Data , 1998 .

[48]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[49]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[50]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[51]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[52]  K. Ranson,et al.  Characterization of Forests in Western Sayani Mountains, Siberia from SIR-C SAR Data , 2001 .

[53]  Guoqing Sun,et al.  Inversion of a lidar waveform model for forest biophysical parameter estimation , 2006, IEEE Geoscience and Remote Sensing Letters.

[54]  J. Hyyppä,et al.  Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions , 2004 .

[55]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Mahta Moghaddam,et al.  Integration of radar and Landsat-derived foliage projected cover for woody regrowth mapping, Queensland, Australia , 2006 .