A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations

This paper presents a general approach for the stability analysis of the time-domain finite-element method (TDFEM) for electromagnetic simulations. Derived from the discrete system analysis, the approach determines the stability by analyzing the root-locus map of a characteristic equation and evaluating the spectral radius of the finite element system matrix. The approach is applicable to the TDFEM simulation involving dispersive media and to various temporal discretization schemes such as the central difference, forward difference, backward difference, and Newmark methods. It is shown that the stability of the TDFEM is determined by the material property and by the temporal and spatial discretization schemes. The proposed approach is applied to a variety of TDFEM schemes, which include: (1) time-domain finite-element modeling of dispersive media; (2) time-domain finite element-boundary integral method; (3) higher order TDFEM; and (4) orthogonal TDFEM. Numerical results demonstrate the validity of the proposed approach for stability analysis.

[1]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  W. Tranter,et al.  Signals and Systems: Continuous and Discrete , 1983 .

[4]  Keith D. Paulsen,et al.  Time-domain integration of the Maxwell equations on finite elements , 1990 .

[5]  R. B. Standler,et al.  A frequency-dependent finite-difference time-domain formulation for dispersive materials , 1990 .

[6]  G. Mur The finite-element modeling of three-dimensional time-domain electromagnetic fields in strongly inhomogeneous media , 1992 .

[7]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[8]  Dennis M. Sullivan,et al.  Frequency-dependent FDTD methods using Z transforms , 1992 .

[9]  Om P. Gandhi,et al.  A frequency-dependent finite-difference time-domain formulation for general dispersive media , 1993 .

[10]  Andre Knoesen,et al.  DISPERSIVE MODELS FOR THE FINITE-DIFFERENCE TIME-DOMAIN METHOD : DESIGN, ANALYSIS, AND IMPLEMENTATION , 1994 .

[11]  Jin-Fa Lee,et al.  WETD /spl minus/ a finite element time-domain approach for solving Maxwell's equations , 1994 .

[12]  Jukka Tuomela,et al.  Fourth‐order schemes for the wave equation, Maxwell equations, and linearized elastodynamic equations , 1994 .

[13]  Peter G. Petropoulos,et al.  Stability and phase error analysis of FD-TD in dispersive dielectrics , 1994 .

[14]  J. L. Young Propagation in linear dispersive media: finite difference time-domain methodologies , 1995 .

[15]  U. Navsariwala,et al.  An unconditionally stable finite element time-domain solution of the vector wave equation , 1995 .

[16]  Jin-Fa Lee,et al.  Whitney elements time domain (WETD) methods , 1995 .

[17]  Song-Yop Hahn,et al.  Time domain finite element analysis of high power microwave aperture antennas , 1995 .

[18]  Jin-Fa Lee,et al.  A finite-element time-domain method using prism elements for microwave cavities , 1995 .

[19]  D. Sorensen IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .

[20]  Dennis M. Sullivan,et al.  Z-transform theory and the FDTD method , 1996 .

[21]  F. Maradei,et al.  An explicit-implicit solution scheme to analyze fast transients by finite elements , 1997 .

[22]  Youdan Kim,et al.  Time-Domain Finite Element Method for Inverse Problem of Aircraft Maneuvers , 1997 .

[23]  Carey M. Rappaport,et al.  A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media , 1997 .

[24]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[25]  M. Salazar-Palma,et al.  Time-domain analysis of TM scattering from conducting cylinders using a hybrid method , 1998 .

[26]  Jianming Jin,et al.  Efficient time-domain and frequency-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method , 1998 .

[27]  Daniel A. White,et al.  Orthogonal vector basis functions for time domain finite element solution of the vector wave equation [EM field analysis] , 1999 .

[28]  Jian-Ming Jin,et al.  Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method , 1999 .

[29]  Thomas Weiland,et al.  Time Domain Simulation of Dispersive Media with the Finite Integration Technique , 2000 .

[30]  Lionel Pichon,et al.  A 3D finite element method for the modelling of bounded and unbounded electromagnetic problems in the time domain , 2000 .

[31]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[32]  Jian-Ming Jin,et al.  Three-dimensional orthogonal vector basis functions for time-domain finite element solution of vector wave equations , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[33]  Jian-Ming Jin,et al.  A fast time-domain finite element-boundary integral method for electromagnetic analysis , 2001 .

[34]  D. Jiao,et al.  Time-domain finite-element modeling of dispersive media , 2001, IEEE Microwave and Wireless Components Letters.

[35]  Jian-Ming Jin,et al.  A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis , 2002 .