One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries

[1]  J. Pinto,et al.  Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries , 2013 .

[2]  Yan Yu,et al.  A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions , 2012 .

[3]  M. Whittingham,et al.  Composition-structure relationships in the Li-ion battery electrode material LiNi(0.5)Mn(1.5)O(4). , 2012, Chemistry of materials : a publication of the American Chemical Society.

[4]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[5]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[6]  Christopher J. Traverse,et al.  One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks , 2011 .

[7]  C. Chen,et al.  Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4 , 2011 .

[8]  Ahmed M. Elkhatat,et al.  Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels , 2011, Advanced materials.

[9]  Yanyan Sun,et al.  Synthesis and electrochemical characterization of LiNi0.5Mn1.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent , 2011 .

[10]  D. Zhao,et al.  Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. , 2011, Angewandte Chemie.

[11]  J. Goodenough,et al.  Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid , 2010 .

[12]  L. Wen,et al.  Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries , 2010 .

[13]  Chun-hua Chen,et al.  One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 by a modified radiated polymer gel method , 2010 .

[14]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[15]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[16]  C. Sotiriou-Leventis,et al.  Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels , 2008 .

[17]  Glenn G. Amatucci,et al.  The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes , 2008 .

[18]  C. Sotiriou-Leventis,et al.  Time-Efficient Acid-Catalyzed Synthesis of Resorcinol−Formaldehyde Aerogels , 2007 .

[19]  Jian-qing Zhang,et al.  Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method , 2007 .

[20]  P. Bruce,et al.  Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries , 2006 .

[21]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[22]  Glenn G. Amatucci,et al.  Synthesis and Characterization of Nanostructured 4.7 V Li x Mn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries , 2006 .

[23]  A. Manthiram,et al.  Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5 − y Ni0.5 − z M y + z O4 (M = Li , Mg, Fe, Co, and Zn) , 2005 .

[24]  E. Cairns,et al.  In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material , 2005 .

[25]  G. Ceder,et al.  In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling , 2005 .

[26]  J. Amarilla,et al.  Nanosize LiNiyMn2 −yO4(0 < y≤ 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance , 2004 .

[27]  De-cheng Li,et al.  Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 , 2004 .

[28]  Xiao‐Qing Yang,et al.  Combined NMR and XAS Study on Local Environments and Electronic Structures of Electrochemically Li-Ion Deintercalated Li1 − x Co1 / 3Ni1 / 3Mn1 / 3 O 2 Electrode System , 2004 .

[29]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[30]  Yang‐Kook Sun,et al.  Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery , 2004 .

[31]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[32]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[33]  J. Tirado,et al.  Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−xNi0.5Mn1.5O4 spinel , 2002 .

[34]  T. Umegaki,et al.  Electrochemical Characteristics of LiNi0.5Mn1.5 O 4 Cathodes with Ti or Al Current Collectors , 2002 .

[35]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .