Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode

[1]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[2]  G. Vitiello,et al.  Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. , 2013, Journal of the American Chemical Society.

[3]  Junliang Yang,et al.  Weak epitaxy growth of organic semiconductor thin films. , 2009, Chemical Society reviews.

[4]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[5]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[6]  Teng Zhang,et al.  Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites , 2014 .

[7]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[8]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[9]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[10]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[11]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[12]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[13]  Licheng Sun,et al.  Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells , 2015 .

[14]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[15]  Licheng Sun,et al.  Phenoxazine‐Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells , 2015 .

[16]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[17]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[18]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[19]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[20]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[21]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[22]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[23]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[24]  M. Nazeeruddin,et al.  Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. , 2014, Chemistry.

[25]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[26]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[27]  Stephen R. Forrest,et al.  Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer , 2004 .

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[32]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[33]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[34]  Ming Cheng,et al.  Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. , 2014, ACS applied materials & interfaces.

[35]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[36]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[37]  S. Zakeeruddin,et al.  Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells , 2014 .

[38]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[39]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[40]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[41]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[42]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[43]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[44]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Qingfeng Dong,et al.  Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells , 2015 .

[47]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[48]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[49]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[50]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[51]  H. Ågren,et al.  AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells. , 2014, ChemSusChem.

[52]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[53]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[54]  Taiho Park,et al.  Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells , 2013, Advanced materials.

[55]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[56]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[57]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[58]  Yanhong Luo,et al.  An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells , 2014 .

[59]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[60]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[61]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[62]  M. Grätzel,et al.  Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. , 2014, Journal of the American Chemical Society.

[63]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[64]  M. Grätzel,et al.  Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. , 2013, ACS nano.