The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation

[1]  Grahame Smith,et al.  The way forward , 2018, Reaching Net Zero.

[2]  A. Meyer,et al.  Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes , 2017, Molecular biology and evolution.

[3]  Nicolas Bailly,et al.  Phylogenetic classification of bony fishes , 2017, BMC Evolutionary Biology.

[4]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[5]  D. Reznick,et al.  The origin and biogeographic diversification of fishes in the family Poeciliidae , 2017, PloS one.

[6]  Ryan K. Schott,et al.  A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes , 2017, Journal of Experimental Biology.

[7]  T. Lamb,et al.  Evolution of Vertebrate Phototransduction: Cascade Activation , 2016, Molecular biology and evolution.

[8]  Nicholas W. Roberts,et al.  Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2 , 2015, Current Biology.

[9]  Clayton E Cressler,et al.  Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein-Uhlenbeck Model. , 2015, Systematic biology.

[10]  Qiong Luo,et al.  The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation , 2015, Nature Genetics.

[11]  S. O’Brien,et al.  The Genome 10K Project: a way forward. , 2015, Annual review of animal biosciences.

[12]  Jiongtang Li,et al.  The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio) , 2015, Scientific Reports.

[13]  James C. Schnable,et al.  ALLMAPS: robust scaffold ordering based on multiple maps , 2015, Genome Biology.

[14]  Martin Malmstrøm,et al.  Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes , 2014, Proceedings of the National Academy of Sciences.

[15]  R. Reinhardt,et al.  European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation , 2014, Nature Communications.

[16]  Ying Sun,et al.  Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes , 2014, Nature Communications.

[17]  Eric S. Lander,et al.  The genomic substrate for adaptive radiation in African cichlid fish , 2014, Nature.

[18]  Feng-Yu Wang,et al.  The Giant Mottled Eel, Anguilla marmorata, Uses Blue-Shifted Rod Photoreceptors during Upstream Migration , 2014, PloS one.

[19]  Michael R. Sussman,et al.  Genomic basis for the convergent evolution of electric organs , 2014, Science.

[20]  P. Ritchie,et al.  Critical amino acid replacements in the rhodopsin gene of 19 teleost species occupying different light environments from shallow-waters to the deep-sea , 2014, Environmental Biology of Fishes.

[21]  I. Johnston,et al.  A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification , 2014, Proceedings of the Royal Society B: Biological Sciences.

[22]  Rainer Froese,et al.  FishBase. World Wide Web electronic publication. , 2014 .

[23]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[24]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[25]  Görel Sundström,et al.  The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications , 2013, BMC Evolutionary Biology.

[26]  M. Hattori,et al.  Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna , 2013, Proceedings of the National Academy of Sciences.

[27]  I. Novales Flamarique Opsin switch reveals function of the ultraviolet cone in fish foraging , 2013, Proceedings of the Royal Society B: Biological Sciences.

[28]  Diana J. Rennison,et al.  Opsin gene duplication and divergence in ray-finned fish. , 2012, Molecular phylogenetics and evolution.

[29]  A. Amores,et al.  Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication , 2011, Genetics.

[30]  J. Taylor,et al.  RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes , 2011, BMC Evolutionary Biology.

[31]  Detlef Weigel,et al.  Gene Duplication and Divergence of Long Wavelength-Sensitive Opsin Genes in the Guppy, Poecilia reticulata , 2011, Journal of Molecular Evolution.

[32]  G. Fain,et al.  Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments. , 2010, Methods in molecular biology.

[33]  F. Breden,et al.  Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri , 2010, BMC Evolutionary Biology.

[34]  S. Yokoyama,et al.  Evolutionary replacement of UV vision by violet vision in fish , 2009, Proceedings of the National Academy of Sciences.

[35]  D. Hunt,et al.  Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. , 2009, Molecular biology and evolution.

[36]  David M Hunt,et al.  Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. , 2008, Genome research.

[37]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[38]  Huan Zhang,et al.  Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates , 2008, Proceedings of the National Academy of Sciences.

[39]  S. Yokoyama Evolution of dim-light and color vision pigments. , 2008, Annual review of genomics and human genetics.

[40]  J. Bowmaker Evolution of vertebrate visual pigments , 2008, Vision Research.

[41]  S. Yokoyama,et al.  Molecular Basis of Spectral Tuning in the Red- and Green-Sensitive (M/LWS) Pigments in Vertebrates , 2008, Genetics.

[42]  J. Taylor,et al.  The molecular basis of color vision in colorful fish: Four Long Wave-Sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites , 2008, BMC Evolutionary Biology.

[43]  Naomi Takenaka,et al.  Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon. , 2007, Gene.

[44]  N. Blow,et al.  A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei). , 2007, Gene.

[45]  Livia S. Carvalho,et al.  Spectral Tuning of Shortwave‐sensitive Visual Pigments in Vertebrates † , 2007, Photochemistry and photobiology.

[46]  T. Spady Cichlids as a model for the evolution of visual sensitivity , 2006 .

[47]  T. Spady,et al.  Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. , 2005, Molecular biology and evolution.

[48]  Akihisa Terakita,et al.  The opsins , 2005, Genome Biology.

[49]  S. Yokoyama,et al.  The spectral tuning in the short wavelength-sensitive type 2 pigments. , 2003, Gene.

[50]  Yusuke Takahashi,et al.  Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. , 2003, Biochemistry.

[51]  Julie D Thompson,et al.  Multiple Sequence Alignment Using ClustalW and ClustalX , 2003, Current protocols in bioinformatics.

[52]  S. Yokoyama,et al.  Molecular genetics and the evolution of ultraviolet vision in vertebrates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[54]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[55]  S. Yokoyama,et al.  ADAPTIVE EVOLUTION OF PHOTORECEPTORS AND VISUAL PIGMENTS IN VERTEBRATES , 1996 .

[56]  J. Bowmaker,et al.  The rhodopsin-encoding gene of bony fish lacks introns. , 1995, Gene.

[57]  J. Nathans Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. , 1990, Biochemistry.

[58]  A. J. Allnutt Optical Aspects of Oceanography , 1975 .