Relativistic effects in gold chemistry. I. Diatomic gold compounds

Nonrelativistic and relativistic Hartree–Fock (HF) and configuration interaction (CI) calculations have been performed in order to analyze the relativistic and correlation effects in various diatomic gold compounds. It is found that relativistic effects reverse the trend in most molecular properties down the group (11). The consequences for gold chemistry are described. Relativistic bond stabilizations or destabilizations are dependent on the electronegativity of the ligand, showing the largest bond destabilization for AuF (86 kJ/mol at the CI level) and the largest stabilization for AuLi (−174 kJ/mol). Relativistic bond contractions lie between 1.09 (AuH+) and 0.16 A (AuF). Relativistic effects of various other properties are discussed. A number of as yet unmeasured spectroscopic properties, such as bondlengths (re), dissociation energies (De), force constants (ke), and dipole moments (μe), are predicted.

[1]  P. Schwerdtfeger,et al.  Relativistic effects in molecules: Pseudopotential calculations for PbH+, PbH, PbH2, and PbH4 , 1989 .

[2]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[3]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[4]  B. Müller Fluorides of Copper, Silver, Gold, and Palladium , 1987 .

[5]  W. Schwarz Relativistic calculations of molecules relativity and bond lengths , 1987 .

[6]  P. Schwerdtfeger,et al.  Relativistic effects in molecules: pseudopotential calculations for TIH+, TIH and TIH3 , 1987 .

[7]  K. Balasubramanian,et al.  CASSCF/CI calculations of low‐lying states and potential energy surfaces of Au3 , 1987 .

[8]  S. Langhoff,et al.  Mixed Cu–simple metal dimers and trimers: CuLi, CuLi2, CuNa, CuK, CuBe, CuBe2, Cu2Be, CuAl, and CuAl2 , 1987 .

[9]  N. H. March,et al.  Chemical Bonds Outside Metal Surfaces , 1986 .

[10]  Peter Schwerdtfeger,et al.  Relativistic and correlation effects in pseudopotential calculations for Br, I, HBr, HI, Br2, and I2 , 1986 .

[11]  V. Nemoshkalenko,et al.  Calculation of the Electron‐Phonon Spectral Function for Gold , 1985 .

[12]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[13]  J. Kollár,et al.  Electronic properties of alkali-metal—gold compounds , 1984 .

[14]  Ian P. Grant,et al.  An atomic multiconfigurational Dirac-Fock package , 1984 .

[15]  N. Christensen Relativistic band structure calculations , 1984 .

[16]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[17]  N. H. March,et al.  Trends in chemisorption energies with atomic number , 1981 .

[18]  P. Jones X-ray structural investigations of gold compounds , 1981 .

[19]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[20]  J. G. Snijders,et al.  Is the relativistic contraction of bond lengths an orbital-contraction effect? , 1980 .

[21]  K. Gingerich,et al.  Atomization Enthalpies of the Molecules Cu3, Ag3, and Au3 , 1980 .

[22]  T. Takeda Self-consistent relativistic bandstructure for gold , 1980 .

[23]  H. Basch,et al.  Relativistic effects in ab initio effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH , 1979 .

[24]  G. Ertl,et al.  The Nature of the surface chemical bond , 1979 .

[25]  J. Lagowski,et al.  Metal-ammonia solutions. 11. Gold(1-), a solvated transition metal anion , 1978 .

[26]  W. R. Wadt,et al.  Ab initio studies of AuH, AuCl, HgH and HgCl2 using relativistic effective core potentials , 1978 .

[27]  S. Rose,et al.  The direct and indirect effects in the relativistic modification of atomic valence orbitals , 1978 .

[28]  C. Thomson,et al.  The use of pseudopotentials in molecular calculations , 1978 .

[29]  R. Puddephatt The chemistry of gold , 1978 .

[30]  E. Langenscheidt,et al.  Determination of the vibration frequency of the high temperature species AuLi by means of matrix isolation spectroscopy , 1977 .

[31]  P. Pyykkö,et al.  Dirac–Fock one-centre calculations show (114)H4 to resemble PbH4 , 1977, Nature.

[32]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .

[33]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[34]  J. Callaway Quantum theory of the solid state , 1974 .

[35]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[36]  N. Christensen,et al.  Relativistic Band Calculation and the Optical Properties of Gold , 1970 .

[37]  Douglas L. Martin Specific Heats below 3°K of Pure Copper, Silver, and Gold, and of Extremely Dilute Gold-Transition-Metal Alloys , 1968 .

[38]  J. Bearden,et al.  Atomic energy levels , 1965 .

[39]  T. Itoh Derivation of Nonrelativistic Hamiltonian for Electrons from Quantum Electrodynamics , 1965 .

[40]  M. Mellon Infrared spectroscopy and molecular structure: Edited by Mansel Davies. University College of Wales, Aberystwyth, Wales. xii + 468 pp. Elsevier, Amsterdam, 1963. $13.50 , 1964 .

[41]  W. Klemm,et al.  Das Verhalten der Alkalimetalle zu Kupfer, Silber und Gold , 1961 .

[42]  D. D. Eley A calculation of heats of chemisorption , 1950 .

[43]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[44]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[45]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[46]  W. Ferguson The Spectrum of Gold Chloride , 1927, Nature.