A spatial dynamic multistock production model

We developed a generalized spatial dynamic age-structured multistock production model by linking bioenergetic principles of physiology, population ecology, and community trophodynamics to a two-dimensional finite- element hydrodynamic circulation model. Animal movement is based on a search of an environmental-habitat feature vector that maximizes cohort production dynamics. We implemented a numerical version of the model and used scientific data visualization to display real-time results. As a proxy for larger regional-scale dynamics, we applied the model to study the space-time behavior of recruitment and predator-prey production dynamics for cohorts of spotted seatrout (Cynoscion nebulosus) and pink shrimp (Penaeus duorarum) in the tropical waters of Biscayne Bay, Florida. Resume : Nous avons elabore un modele de production spatial et dynamique generalise pour stock mixte, structure selon l'âge, en liant des principes bioenergetiques de physiologie, l'ecologie des populations et la trophodynamique des communautes a un modele de circulation hydrodynamique d'elements finis a deux dimensions. Les deplacements des animaux sont fondes sur la recherche d'un vecteur de caracteristiques lie a l'environnement et a l'habitat qui maximise la dynamique de production des cohortes. Nous avons applique une version numerique du modele et utilise la visualisation de donnees scientifiques pour afficher les resultats en temps reel. Comme approximation de la dynamique plus vaste a l'echelle regionale, nous avons applique le modele pour etudier le comportement spatio-temporel de la dynamique de production en rapport avec le recrutement et les relations predateurs-proies chez des cohortes d'acoupa pintade (Cynoscion nebulosus) et de crevette rose du Nord (Penaeus duorarum) dans les eaux tropicales de la baie Biscayne, en Floride.

[1]  Graeme D. Ruxton,et al.  Effects of the spatial and temporal ordering of events on the behaviour of a simple cellular automaton , 1996 .

[2]  B. Rothschild,et al.  Population-dynamic instability as a cause of patch structure , 1996 .

[3]  J. Gerritsen,et al.  Encounter Probabilities and Community Structure in Zooplankton: a Mathematical Model , 1977 .

[4]  Milner B. Schaefer Some aspects of the dynamics of populations important to the management of the commercial marine fisheries , 1991 .

[5]  J. Pearson Natural history and conservation of the redfish and other commercial sciaenids on the Texas coast. , 1928 .

[6]  K. Thornton,et al.  A Temperature Algorithm for Modifying Biological Rates , 1978 .

[7]  J. Pella,et al.  A generalized stock production model , 1969 .

[8]  William W. Fox,et al.  An Exponential Surplus-Yield Model for Optimizing Exploited Fish Populations , 1970 .

[9]  Ronald G. Taylor,et al.  Age, growth, and mortality of spotted seatrout in Florida waters , 1994 .

[10]  Bradford E. Brown Differential Sex Mortality Associated with Handling Landlocked Alewives , 1961 .

[11]  Robert H. Gardner,et al.  Individual Parameter Perturbation and Error Analysis of Fish Bioenergetics Models , 1986 .

[12]  Andrew Paul Gutierrez Applied Population Ecology: A Supply-Demand Approach , 1996 .

[13]  J. Ault,et al.  Effects of freshwater canal discharge on fish assemblages in a subtropical bay: field and laboratory observations , 1997 .

[14]  T. Targett,et al.  Suitability of estuarine nursery zones for juvenile weakfish (Cynoscion regalis): effects of temperature and salinity on feeding, growth and survival , 1994 .

[15]  S. C. Venema,et al.  Introduction to tropical fish stock assessment , 1992 .

[16]  J. Ault,et al.  Management Strategies to Conserve Marine Biodiversity , 1996 .

[17]  J. Luo,et al.  Virtual reality of planktivores: a fish\'s perspective of prey size selection , 1996 .

[18]  R. Livingston Trophic response of estuarine fishes to long-term changes of river runoff , 1997 .

[19]  D. J. Stewart,et al.  Applications of a Bioenergetics Model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum) , 1977 .

[20]  D. Barber SPAWNING AND RECRUITMENT OF PINK SHRIMP, PENAEUS DUORARUM, OFF EASTERN FLORIDA , 1981 .

[21]  D. C. Tabb The estuary as a habitat for spotted seatrout, Cynoscion nebulosus. , 1966 .

[22]  A. Zale,et al.  Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Florida) , 1989 .

[23]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[24]  D. Hughes RESPONSES TO SALINITY CHANGE AS A TIDAL TRANSPORT MECHANISM OF PINK SHRIMP, PENAEUS DUORARUM , 1969 .

[25]  L. Bertalanffy Problems of Organic Growth , 1949, Nature.

[26]  D. Olson,et al.  A Multicohort Stock Production Model , 1996 .

[27]  H. Berg Random Walks in Biology , 2018 .

[28]  John D. Wang,et al.  Finite Element Characteristic Advection Model , 1988 .

[29]  J. M. Elliott,et al.  Fish Stock Assessment. A Manual of Basic Methods , 1984 .

[30]  William W. Fox,et al.  FITTING THE GENERALIZED STOCK PRODUCTION MODEL BY LEAST-SQUARES AND EQUILIBRIUM APPROXIMATION! , 1975 .

[31]  X. Niu,et al.  FRESHWATER INPUT TO A GULF ESTUARY: LONG‐TERM CONTROL OF TROPHIC ORGANIZATION , 1997 .

[32]  J. Ault,et al.  A retrospective (1979-1996) multispecies assessment of coral reef fish stocks in the Florida keys , 1998 .

[33]  G. Gunter,et al.  Some Relations of Salinity to Population Distributions of Motile Estuarine Organisms, with Special Reference to Penaeid Shrimp , 1964 .

[34]  D. R. Johnson,et al.  Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida). Spotted Seatrout. , 1986 .

[35]  Richard M. Feldman,et al.  Mathematical foundations of population dynamics , 1987 .

[36]  D. Brown,et al.  Models in biology : mathematics, statistics and computing , 1995 .

[37]  Robert H. McMichael,et al.  Early life history of spotted seatrout,Cynoscion nebulosus (Pisces: Sciaenidae), in Tampa Bay, Florida , 1989 .

[38]  D. Mason,et al.  Spatially‐explicit Models of Fish Growth Rate , 1992 .

[39]  D. Hughes FACTORS CONTROLLING EMERGENCE OF PINK SHRIMP (PENAEUS DUORARUM) FROM THE SUBSTRATE , 1968 .

[40]  E. Rutherford,et al.  Early life history of spotted seatrout (Cynoscion nebulosus) and gray snapper (Lutjanus griseus) in Florida Bay, Everglades National Park, Florida , 1989 .

[41]  Stephen B. Brandt,et al.  Spatially Explicit Models of Striped Bass Growth Potential in Chesapeake Bay , 1993 .

[42]  K Alagaraja,et al.  SIMPLE METHODS FOR ESTIMATION OF PARAMETERS FOR ASSESSING EXPLOITED FISH STOCKS , 1984 .

[43]  M. Clarke,et al.  Influence of Florida Current, gyres and wind-driven circulation on transport of larvae and recruitment in the Florida Keys coral reefs , 1992 .

[44]  W. Hettler Food habits of juveniles of spotted seatrout and gray snapper in western Florida Bay , 1989 .

[45]  C. Montague,et al.  A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in Northeastern Florida Bay , 1993 .

[46]  Mark A. Harwell,et al.  Ecosystem management to achieve ecological sustainability: The case of South Florida , 1996, Environmental management.

[47]  J. Ault,et al.  An Efficient Sampling Survey Design to Estimate Pink Shrimp Population Abundance in Biscayne Bay, Florida , 1999 .

[48]  G. L. Beardsley Distribution of Migrating Juvenile Pink Shrimp, Penaeus duorarum duorarum Burkenroad, in Buttonwood Canal, Everglades National Park, Florida , 1970 .

[49]  I. Potter,et al.  The ichthyofauna of an intermittently open estuary: Implications of bar breaching and low salinities on faunal composition , 1997 .

[50]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.