A novel subnetwork alignment approach predicts new components of the cell cycle regulatory apparatus in Plasmodium falciparum

BackgroundAccording to the World Health organization, half the world's population is at risk of contracting malaria. They estimated that in 2010 there were 219 million cases of malaria, resulting in 660,000 deaths and an enormous economic burden on the countries where malaria is endemic. The adoption of various high-throughput genomics-based techniques by malaria researchers has meant that new avenues to the study of this disease are being explored and new targets for controlling the disease are being developed. Here, we apply a novel neighborhood subnetwork alignment approach to identify the interacting elements that help regulate the cell cycle of the malaria parasite Plasmodium falciparum.ResultsOur novel subnetwork alignment approach was used to compare networks in Escherichia coli and P. falciparum. Some 574 P. falciparum proteins were revealed as functional orthologs of known cell cycle proteins in E. coli. Over one third of these predicted functional orthologs were annotated as "conserved Plasmodium proteins" or "putative uncharacterized proteins" of unknown function. The predicted functionalities included cyclins, kinases, surface antigens, transcriptional regulators and various functions related to DNA replication, repair and cell division.ConclusionsThe results of our analysis demonstrate the power of our subnetwork alignment approach to assign functionality to previously unannotated proteins. Here, the focus was on proteins involved in cell cycle regulation. These proteins are involved in the control of diverse aspects of the parasite lifecycle and of important aspects of pathogenesis.

[1]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[2]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[3]  P. Matsudaira,et al.  beta-Scruin, a homologue of the actin crosslinking protein scruin, is localized to the acrosomal vesicle of Limulus sperm. , 1995, Journal of cell science.

[4]  Damian Szklarczyk,et al.  eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations , 2009, Nucleic Acids Res..

[5]  ScienceDirect Molecular and biochemical parasitology , 1980 .

[6]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[7]  Edwin Lasonder,et al.  Protein Export Marks the Early Phase of Gametocytogenesis of the Human Malaria Parasite Plasmodium falciparum* , 2010, Molecular & Cellular Proteomics.

[8]  Wojciech Szpankowski,et al.  Detecting Conserved Interaction Patterns in Biological Networks , 2006, J. Comput. Biol..

[9]  H. Stunnenberg,et al.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 , 2010, PLoS pathogens.

[10]  M. Vignali,et al.  NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children. , 2011, The Journal of clinical investigation.

[11]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[12]  E. Boye,et al.  Characterization of three genes in the dam-containing operon of Escherichia coli , 1995, Molecular and General Genetics MGG.

[13]  S. Lonardi,et al.  Supplemental Material to : Nucleosome landscape and control of transcription in the human malaria parasite , 2009 .

[14]  Roded Sharan,et al.  PathBLAST: a tool for alignment of protein interaction networks , 2004, Nucleic Acids Res..

[15]  Hans-Peter Kriegel,et al.  Graph Kernels For Disease Outcome Prediction From Protein-Protein Interaction Networks , 2006, Pacific Symposium on Biocomputing.

[16]  C. Janse,et al.  Malaria parasites: genomes and molecular biology. , 2004 .

[17]  Yufeng Wang,et al.  Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum , 2012, BMC Systems Biology.

[18]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[19]  Douglas W. Smith,et al.  The Escherichia coli dam gene is expressed as a distal gene of a new operon , 1989, Molecular and General Genetics MGG.

[20]  D. Chakrabarti,et al.  Cell cycle control in Plasmodium falciparum: a genomics perspective , 2004 .

[21]  Martijn A. Huynen,et al.  Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity , 2008, PLoS pathogens.

[22]  Xinxia Peng,et al.  A combined transcriptome and proteome survey of malaria parasite liver stages , 2008, Proceedings of the National Academy of Sciences.

[23]  Manuel Llinás,et al.  Structural determinants of DNA binding by a P. falciparum ApiAP2 transcriptional regulator. , 2010, Journal of molecular biology.

[24]  G. Fall,et al.  The RhopH complex is transferred to the host cell cytoplasm following red blood cell invasion by Plasmodium falciparum. , 2008, Molecular and biochemical parasitology.

[25]  Olivier Gascuel,et al.  A Plasmodium falciparum FcB1-schizont-EST collection providing clues to schizont specific gene structure and polymorphism , 2009, BMC Genomics.

[26]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[27]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.

[28]  Yufeng Wang,et al.  Prediction of novel systems components in cell cycle regulation in malaria parasite by subnetwork alignments , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine.

[29]  Alejandro Llanos-Cuentas,et al.  Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes , 2010, Proceedings of the National Academy of Sciences.

[30]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[31]  Neil Hall,et al.  Regulation of Sexual Development of Plasmodium by Translational Repression , 2006, Science.

[32]  Kellen L. Olszewski,et al.  Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network , 2010, Molecular systems biology.

[33]  BMC Bioinformatics , 2005 .

[34]  Stanley Fields,et al.  Selection of yeast strains with enhanced expression of Plasmodium falciparum proteins. , 2009, Molecular and biochemical parasitology.

[35]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[36]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[37]  Serge Batalov,et al.  Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum , 2009, Genome Biology.

[38]  Byung-Jun Yoon,et al.  Fast network querying algorithm for searching large-scale biological networks , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  Isabel M. Tienda-Luna,et al.  Inferring the skeleton cell cycle regulatory network of malaria parasite using comparative genomic and variational Bayesian approaches , 2007, Genetica.

[40]  John R Yates,et al.  Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. , 2004, Molecular and biochemical parasitology.

[41]  R. Carter,et al.  A MAP kinase homologue from the human malaria parasite, Plasmodium falciparum. , 1996, Gene.

[42]  Bonnie Berger,et al.  Global Alignment of Multiple Protein Interaction Networks , 2008, Pacific Symposium on Biocomputing.

[43]  Benjamin F. Cravatt,et al.  Global Profiling of Proteolysis during Rupture of Plasmodium falciparum from the Host Erythrocyte , 2010, Molecular & Cellular Proteomics.

[44]  Aparna Dixit,et al.  PfSRPK1, a Novel Splicing-related Kinase from Plasmodium falciparum* , 2010, The Journal of Biological Chemistry.

[45]  Hagai Ginsburg,et al.  The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites , 2008, Proceedings of the National Academy of Sciences.

[46]  Masahide Sasaki,et al.  Comparasite: a database for comparative study of transcriptomes of parasites defined by full-length cDNAs , 2006, Nucleic Acids Res..

[47]  Jonathan Crabtree,et al.  Comparative genomics of the neglected human malaria parasite Plasmodium vivax , 2008, Nature.

[48]  Yingyao Zhou,et al.  A Systems-Based Analysis of Plasmodium vivax Lifecycle Transcription from Human to Mosquito , 2010, PLoS neglected tropical diseases.

[49]  Sourav Bandyopadhyay,et al.  Systematic identification of functional orthologs based on protein network comparison. , 2006, Genome research.

[50]  E. Smythe,et al.  The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. , 2003, EMBO reports.

[51]  Roded Sharan,et al.  Torque: topology-free querying of protein interaction networks , 2009, Nucleic Acids Res..

[52]  Steven A. Sullivan,et al.  Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade , 2012, Nature Genetics.

[53]  A. Tobin,et al.  Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. , 2011, Nature communications.

[54]  Yufeng Wang,et al.  Protease-associated cellular networks in malaria parasite Plasmodium falciparum , 2011, BMC Genomics.

[55]  Manuel Llinás,et al.  The Apicomplexan AP2 family: integral factors regulating Plasmodium development. , 2011, Molecular and biochemical parasitology.

[56]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[57]  Kathryn R. Ayscough,et al.  The Ark1/Prk1 family of protein kinases , 2003 .

[58]  J. Daily,et al.  Metabolomics and malaria biology. , 2011, Molecular and biochemical parasitology.

[59]  T. Sittler,et al.  The Plasmodium protein network diverges from those of other eukaryotes , 2005, Nature.

[60]  Shi-Hua Zhang,et al.  Alignment of molecular networks by integer quadratic programming , 2007, Bioinform..

[61]  Christian J Stoeckert,et al.  Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. , 2006, Genome research.

[62]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[63]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[64]  Liwang Cui,et al.  Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes , 2009, BMC Genomics.

[65]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[66]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[67]  Leann Tilley,et al.  Plasmodium falciparum metabolic pathways (MPMP) project upgraded with a database of subcellular locations of gene products. , 2011, Trends in parasitology.

[68]  Gunnar W. Klau,et al.  A new graph-based method for pairwise global network alignment , 2009, BMC Bioinformatics.

[69]  Raphael D Isokpehi,et al.  Integrative analysis of intraerythrocytic differentially expressed transcripts yields novel insights into the biology of Plasmodium falciparum , 2003, Malaria Journal.

[70]  Alex Bateman,et al.  The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission , 2010, Cell host & microbe.

[71]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[72]  Jetsumon Sattabongkot,et al.  Determination of the Plasmodium vivax schizont stage proteome. , 2011, Journal of proteomics.

[73]  Laurent Meijer,et al.  Plasmodium falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality for the erythrocytic asexual cycle , 2011, Microbiology.

[74]  Utpal Tatu,et al.  Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[75]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[76]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[77]  Barbara Kappes,et al.  Activation of a Plasmodium falciparum cdc2-related Kinase by Heterologous p25 and Cyclin H , 2000, The Journal of Biological Chemistry.

[78]  Natarajan Kannan,et al.  Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa , 2011, BMC Evolutionary Biology.

[79]  Oliver Billker,et al.  Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. , 2007, Cell host & microbe.

[80]  Ke Wang,et al.  Profile-based string kernels for remote homology detection and motif extraction , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[81]  G. Poinar,et al.  Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from Tertiary Dominican amber , 2005, Systematic Parasitology.

[82]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[83]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[84]  Karsten M. Borgwardt,et al.  The genome of the simian and human malaria parasite Plasmodium knowlesi , 2008, Nature.

[85]  X. Su,et al.  Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum , 2011, BMC Genomics.