No two non-real conjugates of a Pisot number have the same imaginary part

We show that the number α = (1 + √ 3 + 2 √ 5)/2 with minimal polynomial x4 − 2x3 + x − 1 is the only Pisot number whose four distinct conjugates α1, α2, α3, α4 satisfy the additive relation α1+α2 = α3+α4. This implies that there exists no two non-real conjugates of a Pisot number with the same imaginary part and also that at most two conjugates of a Pisot number can have the same real part. On the other hand, we prove that similar four term equations α1 = α2 + α3 + α4 or α1 + α2 + α3 + α4 = 0 cannot be solved in conjugates of a Pisot number α. We also show that the roots of the Siegel’s polynomial x3−x−1 are the only solutions to the three term equation α1+α2+α3 = 0 in conjugates of a Pisot number. Finally, we prove that there exists no Pisot number whose conjugates satisfy the relation α1 = α2 + α3.

[1]  Jonas Jankauskas Simple linear relations between conjugate algebraic numbers of low degree , 2015 .

[2]  Charles L. Samuels,et al.  Lower bounds on the projective heights of algebraic points , 2014, 1408.5048.

[3]  David W. Boyd Pisot numbers in the neighborhood of a limit point. II , 1984 .

[4]  David W. Boyd Pisot and Salem numbers in intervals of the real line , 1978 .

[5]  Chris Smyth,et al.  Seventy years of Salem numbers , 2014, 1408.0195.

[6]  C. J. Smyth Conjugate algebraic numbers on conics , 1982 .

[7]  Chris Smyth,et al.  On the lines passing through two conjugates of a Salem number , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Richard Padovan,et al.  Dom Hans van der Laan and the Plastic Number , 2015 .

[9]  Gerald Höhn,et al.  Un résultat de Schinzel , 1993 .

[10]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[11]  C. Siegel,et al.  Algebraic integers whose conjugates lie in the unit circle , 1944 .

[12]  Chris Smyth Number Theory and Polynomials: The Mahler measure of algebraic numbers: a survey , 2008 .

[13]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .

[14]  David W. Boyd,et al.  Pisot Numbers in the Neighbourhood of a Limit Point, I , 1985 .

[15]  Christopher Pinner,et al.  On the product of heights of algebraic numbers summing to real numbers , 2010 .

[16]  Jeffrey C. Lagarias,et al.  Asymmetric tent map expansions II. Purely periodic points , 1994 .

[17]  Arturas Dubickas On the degree of a linear form in conjugates of an algebraic number , 2002 .

[18]  R. Salem,et al.  A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan , 1944 .

[19]  Jeffrey C. Lagarias,et al.  Asymmetric Tent Map Expansions. I. Eventually Periodic Points , 1993 .

[20]  A. Bazylewicz,et al.  On the product of the conjugates outside the unit circle of an algebraic integer , 1976 .

[21]  Andrzej Schinzel,et al.  On the product of the conjugates outside the unit circle of an algebraic number , 1973 .

[22]  Chris Smyth,et al.  There are Only Eleven Special Pisot Numbers , 1999 .

[23]  Don Zagier,et al.  Lower bounds of heights of points on hypersurfaces , 1997 .