Dynamical rational solutions and their interaction phenomena for an extended nonlinear equation

In this paper, we analyze the extended Bogoyavlenskii-Kadomtsev-Petviashvili (eBKP) equation utilizing the condensed Hirota’s approach. In accordance with a logarithmic derivative transform, we produce solutions for single, double, and triple M-lump waves. Additionally, we investigate the interaction solutions of a single M-lump with a single soliton, a single M-lump with a double soliton, and a double M-lump with a single soliton. Furthermore, we create sophisticated single, double, and triple complex soliton wave solutions. The extended Bogoyavlenskii-Kadomtsev-Petviashvili equation describes nonlinear wave phenomena in fluid mechanics, plasma, and shallow water theory. By selecting appropriate values for the related free parameters we also create three-dimensional surfaces and associated counter plots to simulate the dynamical characteristics of the solutions offered.

[1]  Muhammad Tanveer,et al.  A Four Step Feedback Iteration and Its Applications in Fractals , 2022, Fractal and Fractional.

[2]  R. Yilmazer,et al.  Newly modified unified auxiliary equation method and its applications , 2022, Optik.

[3]  Karmina K. Ali,et al.  Investigation of the dynamical behavior of the Hirota-Maccari system in single-mode fibers , 2022, Optical and Quantum Electronics.

[4]  Karmina K. Ali,et al.  The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function , 2022, Chaos, Solitons & Fractals.

[5]  H. Ramos,et al.  Time-efficient reformulation of the Lobatto III family of order eight , 2022, J. Comput. Sci..

[6]  S. Qureshi,et al.  Development of a New Multi-step Iteration Scheme for Solving Non-Linear Models with Complex Polynomiography , 2022, Complex..

[7]  J. F. Gómez‐Aguilar,et al.  On the numerical study of fractional and non-fractional model of nonlinear Duffing oscillator: a comparison of integer and non-integer order approaches , 2022, International Journal of Modelling and Simulation.

[8]  M. S. Osman,et al.  On dynamical behavior for optical solitons sustained by the perturbed Chen–Lee–Liu model , 2022, Communications in Theoretical Physics.

[9]  Yinping Liu,et al.  Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation , 2022, Appl. Math. Lett..

[10]  D. Baleanu,et al.  The dynamical behavior for a famous class of evolution equations with double exponential nonlinearities , 2022, Journal of Ocean Engineering and Science.

[11]  K. U. Tariq,et al.  New Exact and Solitary Wave Solutions of Nonlinear Schamel–KdV Equation , 2022, International Journal of Applied and Computational Mathematics.

[12]  New Wave Behaviours of the Generalized Kadomtsev- Petviashvili Modified Equal Width-Burgers Equation , 2022, Applied Mathematics & Information Sciences.

[13]  M. S. Osman,et al.  Dynamic behavior of the (3+1)-dimensional KdV–Calogero–Bogoyavlenskii–Schiff equation , 2022, Optical and Quantum Electronics.

[14]  Karmina K. Ali,et al.  M-lump solutions and interactions phenomena for the (2+1)-dimensional KdV equation with constant and time-dependent coefficients , 2021, Chinese Journal of Physics.

[15]  Karmina K. Ali,et al.  Extended Calogero-Bogoyavlenskii-Schiff equation and its dynamical behaviors , 2021, Physica Scripta.

[16]  H. Bulut,et al.  Dynamics of soliton and mixed lump-soliton waves to a generalized Bogoyavlensky-Konopelchenko equation , 2021 .

[17]  H. Bulut,et al.  Multiple soliton, fusion, breather, lump, mixed kink-lump and periodic solutions to the extended shallow water wave model in (2+1)-dimensions , 2020, Modern Physics Letters B.

[18]  H. Bulut,et al.  Multi soliton solutions, M-lump waves and mixed soliton-lump solutions to the awada-Kotera equation in (2+1)-dimensions , 2020 .

[19]  Choonkill Park,et al.  M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation , 2020 .

[20]  P. Thounthong,et al.  Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G′/G,1/G)-expansion and (1/G′)-expansion techniques , 2020 .

[21]  A. Wazwaz On integrability of an extended Bogoyavlenskii‐Kadomtsev‐Petviashvili equation: Multiple soliton solutions , 2020, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.

[22]  J. Manafian,et al.  Cross-Kink Wave Solutions and Semi-Inverse Variational Method for (3 + 1)-Dimensional Potential-YTSF Equation , 2020, East Asian Journal on Applied Mathematics.

[23]  Yufeng Zhang,et al.  Soliton and lump-soliton solutions in the Grammian form for the Bogoyavlenskii–Kadomtsev–Petviashvili equation , 2020 .

[24]  Wenxiu Ma,et al.  Lump solutions with higher-order rational dispersion relations , 2020, Pramana.

[25]  Wen-Xiu Ma,et al.  Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation , 2018, Comput. Math. Appl..

[26]  A. Wazwaz Multiple Complex Soliton Solutions for the Integrable Sinh-Gordon and the Modified KdV-Sinh-Gordon Equation , 2018, Applied Mathematics & Information Sciences.

[27]  Yinping Liu,et al.  M-lump and interactive solutions to a (3 $${+}$$+ 1)-dimensional nonlinear system , 2018 .

[28]  Yong Chen,et al.  Deformation rogue wave to the (2+1)-dimensional KdV equation , 2017 .

[29]  Wen-Xiu Ma,et al.  Lump solutions to nonlinear partial differential equations via Hirota bilinear forms , 2016, 1607.06983.

[30]  Chaudry Masood Khalique,et al.  Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation , 2016, Comput. Math. Appl..

[31]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[32]  Wen-Xiu Ma,et al.  Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm , 2012, Appl. Math. Comput..

[33]  M. Khalfallah New exact traveling wave solutions of the (3 + 1) dimensional Kadomtsev–Petviashvili (KP) equation , 2009 .

[34]  Adrian Ankiewicz,et al.  Dissipative soliton resonances in the anomalous dispersion regime , 2009 .

[35]  A. Kiselev Localized light waves: Paraxial and exact solutions of the wave equation (a review) , 2007 .

[36]  Zhiyong Xu,et al.  Two-dimensional multipole solitons in nonlocal nonlinear media. , 2006, Optics letters.

[37]  Yong Chen,et al.  New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation , 2003 .

[38]  J. Nimmo,et al.  Lump solutions of the BKP equation , 1990 .

[39]  J. R. Ray Exact solutions to the time-dependent Schrdinger equation , 1982 .

[40]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[41]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[42]  Junkichi Satsuma,et al.  N-Soliton Solution of the Two-Dimensional Korteweg-deVries Equation , 1976 .

[43]  Ryogo Hirota,et al.  Exact Three-Soliton Solution of the Two-Dimensional Sine-Gordon Equation , 1973 .

[44]  Ryogo Hirota,et al.  Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons , 1972 .

[45]  H. M. Baskonus,et al.  Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative , 2021 .

[46]  Wen-Xiu Ma,et al.  Mixed lump-kink solutions to the KP equation , 2017, Comput. Math. Appl..