Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems.

The linearized approximation to the semiclassical initial value representation (LSC-IVR) has been used together with the thermal Gaussian approximation (TGA) (TGA/LSC-IVR) [J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006)] to simulate quantum dynamical effects in realistic models of two condensed phase systems. This represents the first study of dynamical properties of the Ne(13) Lennard-Jones cluster in its liquid-solid phase transition region (temperature from 4 to 14 K). Calculation of the force autocorrelation function shows considerable differences from that given by classical mechanics, namely that the cluster is much more mobile (liquidlike) than in the classical case. Liquid para-hydrogen at two thermodynamic state points (25 and 14 K under nearly zero external pressure) has also been studied. The momentum autocorrelation function obtained from the TGA/LSC-IVR approach shows very good agreement with recent accurate path integral Monte Carlo results at 25 K [A. Nakayama and N. Makri, J. Chem. Phys. 125, 024503 (2006)]. The self-diffusion constants calculated by the TGA/LSC-IVR are in reasonable agreement with those from experiment and from other theoretical calculations. These applications demonstrate the TGA/LSC-IVR to be a practical and versatile method for quantum dynamics simulations of condensed phase systems.

[1]  N. Makri,et al.  Symmetrized correlation function for liquid para-hydrogen using complex-time pair-product propagators. , 2006, The Journal of chemical physics.

[2]  Haobin Wang,et al.  Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems , 2001 .

[3]  N. Makri,et al.  Simulation of dynamical properties of normal and superfluid helium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[5]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[6]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[7]  N. Makri,et al.  Forward-backward semiclassical dynamics for quantum fluids using pair propagators: Application to liquid para-hydrogen , 2003 .

[8]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[9]  G. Voth,et al.  A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium. , 2004, The Journal of chemical physics.

[10]  K. Kay,et al.  Semiclassical initial value treatments of atoms and molecules. , 2005, Annual review of physical chemistry.

[11]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions , 1971 .

[12]  N. Makri Monte Carlo Evaluation of Forward−Backward Semiclassical Correlation Functions with a Quantized Coherent State Density , 2002 .

[13]  Qiang Shi,et al.  Vibrational energy relaxation in liquid oxygen from a semiclassical molecular dynamics simulation , 2003 .

[14]  William H Miller,et al.  Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation. , 2007, The Journal of chemical physics.

[15]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[16]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics without Prefactors , 1999 .

[18]  Michael Thoss,et al.  Semiclassical description of molecular dynamics based on initial-value representation methods. , 2004, Annual review of physical chemistry.

[19]  M. Fernández‐Díaz,et al.  Microscopic collective dynamics in liquid para-H2 , 1999 .

[20]  William H Miller,et al.  Including quantum effects in the dynamics of complex (i.e., large) molecular systems. , 2006, The Journal of chemical physics.

[21]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics with Linear Scaling , 1999 .

[22]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[23]  B. K. Rao,et al.  Physics and Chemistry of Finite Systems: From Clusters to Crystals , 1992 .

[24]  P. Rossky,et al.  Practical evaluation of condensed phase quantum correlation functions: A Feynman–Kleinert variational linearized path integral method , 2003 .

[25]  Brumer,et al.  Semiclassical propagation: Phase indices and the initial-value formalism. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[26]  B. Berne,et al.  The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jian Liu,et al.  Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions. , 2006, The Journal of chemical physics.

[28]  J. Doll,et al.  COMPUTATIONAL STUDIES OF CLUSTERS:Methods and Results , 1996 .

[29]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[30]  Gregory A Voth,et al.  A comparative study of imaginary time path integral based methods for quantum dynamics. , 2006, The Journal of chemical physics.

[31]  L. Bartell Structure and transformation: Large molecular clusters as models of condensed matter. , 1998, Annual review of physical chemistry.

[32]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[33]  Victor V. Goldman,et al.  The isotropic intermolecular potential for H2 and D2 in the solid and gas phases , 1978 .

[34]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[35]  William H. Miller,et al.  Classical‐Limit Quantum Mechanics and the Theory of Molecular Collisions , 2007 .

[36]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[37]  William H. Miller,et al.  Semiclassical calculation of thermal rate constants in full Cartesian space: The benchmark reaction D+H2→DH+H , 2003 .

[38]  Eli Pollak,et al.  A new quantum transition state theory , 1998 .

[39]  Qiang Shi,et al.  Vibrational energy relaxation rates via the linearized semiclassical approximation: applications to neat diatomic liquids and atomic-diatomic liquid mixtures. , 2005, The journal of physical chemistry. A.

[40]  William H. Miller,et al.  Quantum mechanical rate constants for bimolecular reactions , 1983 .

[41]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions. Uniformization with Elastic Collision Trajectories , 1972 .

[42]  Eitan Geva,et al.  Vibrational energy relaxation rates of H2 and D2 in liquid argon via the linearized semiclassical method. , 2007, The journal of physical chemistry. A.

[43]  N. Makri,et al.  Long-time behaviour of quantized distributions in forward–backward semiclassical dynamics , 2006 .

[44]  W. Miller,et al.  Forward-backward initial value representation for semiclassical time correlation functions , 1999 .

[45]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[46]  J. Doll,et al.  Theoretical studies of the energetics and structures of atomic clusters , 1989 .

[47]  Gregory A. Voth,et al.  Hyper-parallel algorithms for centroid molecular dynamics: application to liquid para-hydrogen , 1996 .

[48]  William H Miller,et al.  Quantum dynamics of complex molecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. Makri,et al.  Phase space features and statistical aspects of forward - Backward semiclassical dynamics , 2004 .

[50]  Bruce J. Berne,et al.  On the Calculation of Time Correlation Functions , 2007 .

[51]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[52]  B. M. Smirnov,et al.  REVIEWS OF TOPICAL PROBLEMS: Phase transitions and adjacent phenomena in simple atomic systems , 2005 .

[53]  Transformation theory for phase-space representations of quantum mechanics , 2000 .

[54]  E. Rabani,et al.  A self-consistent mode-coupling theory for dynamical correlations in quantum liquids: Application to liquid para-hydrogen , 2002 .

[55]  Bermejo,et al.  Quantum effects on liquid dynamics as evidenced by the presence of well-defined collective excitations in liquid para-hydrogen , 2000, Physical review letters.

[56]  R. Stephen Berry,et al.  Melting and freezing in isothermal Ar13 clusters , 1987 .

[57]  M. Scully,et al.  A new approach to molecular collisions: Statistical quasiclassical method , 1980 .

[58]  Eitan Geva,et al.  Vibrational energy relaxation of polyatomic molecules in liquid solution via the linearized semiclassical method. , 2006, The journal of physical chemistry. A.

[59]  Qiang Shi,et al.  A relationship between semiclassical and centroid correlation functions , 2003 .

[60]  Vladimir A Mandelshtam,et al.  Quantum statistical mechanics with Gaussians: equilibrium properties of van der Waals clusters. , 2004, The Journal of chemical physics.

[61]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[62]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[63]  R. Berry,et al.  Solid‐Liquid Phase Behavior in Microclusters , 2007 .

[64]  William H. Miller,et al.  Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems , 1998 .

[65]  N. Makri,et al.  Forward-backward semiclassical dynamics for systems of indistinguishable particles , 2004 .

[66]  J. Doll,et al.  Heat Capacity Estimators for Random Series Path-Integral Methods by Finite-Difference Schemes , 2003, cond-mat/0307769.

[67]  P. Frantsuzov,et al.  Structural transformations and melting in neon clusters: quantum versus classical mechanics. , 2006, Physical review letters.

[68]  William H. Miller,et al.  Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation , 1998 .

[69]  L. Hove Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction , 1949 .

[70]  N. Makri,et al.  Symmetries and detailed balance in forward–backward semiclassical dynamics , 2006 .

[71]  Thomas F. Miller,et al.  Sum rule constraints on Kubo-transformed correlation functions , 2006 .

[72]  William H. Miller,et al.  The Classical S‐Matrix in Molecular Collisions , 2007 .

[73]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[74]  William H. Miller,et al.  Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates , 1998 .

[75]  P. Rossky,et al.  Quantum diffusion in liquid para-hydrogen: An application of the Feynman-Kleinert linearized path integral approximation , 2004 .

[76]  A. Neumaier,et al.  Gaussian resolutions for equilibrium density matrices , 2003, quant-ph/0306124.

[77]  Thomas F. Miller,et al.  Quantum diffusion in liquid para-hydrogen from ring-polymer molecular dynamics. , 2005, The Journal of chemical physics.

[78]  Qiang Shi,et al.  Semiclassical Theory of Vibrational Energy Relaxation in the Condensed Phase , 2003 .