Efficacy of HLA-DRB1∗03:01 and H2E transgenic mouse strains to correlate pathogenic thyroglobulin epitopes for autoimmune thyroiditis.

Thyroglobulin (Tg), a homodimer of 660 kD comprising 2748 amino acids, is the largest autoantigen known. The prevalence of autoimmune thyroid disease, including Hashimoto's thyroiditis and Graves' disease, has provided the impetus for identifying pathogenic T cell epitopes from human Tg over two decades. With no known dominant epitopes, the search has long been a challenge for investigators. After identifying HLA-DRB1∗03:01 (HLA-DR3) and H2E(b) as susceptibility alleles for Tg-induced experimental autoimmune thyroiditis in transgenic mouse strains, we searched for naturally processed T cell epitopes with MHC class II-binding motif anchors and tested the selected peptides for pathogenicity in these mice. The thyroiditogenicity of one peptide, hTg2079, was confirmed in DR3 transgenic mice and corroborated in clinical studies. In H2E(b)-expressing transgenic mice, we identified three T cell epitopes from mouse Tg, mTg179, mTg409 and mTg2342, based on homology to epitopes hTg179, hTg410 and hTg2344, respectively, which we and others have found stimulatory or pathogenic in both DR3- and H2E-expressing mice. The high homology among these peptides with shared presentation by DR3, H2E(b) and H2E(k) molecules led us to examine the binding pocket residues of these class II molecules. Their similar binding characteristics help explain the pathogenic capacity of these T cell epitopes. Our approach of using appropriate human and murine MHC class II transgenic mice, combined with the synthesis and testing of potential pathogenic Tg peptides predicted from computational models of MHC-binding motifs, should continue to provide insights into human autoimmune thyroid disease.

[1]  J. Banga,et al.  Application of HLA class II transgenic mice to study autoimmune regulation. , 2007, Thyroid : official journal of the American Thyroid Association.

[2]  C. David,et al.  Flexibility of TCR repertoire and permissiveness of HLA-DR3 molecules in experimental autoimmune thyroiditis in nonobese diabetic mice. , 2001, Journal of autoimmunity.

[3]  P. Youinou Haralampos M. Moutsopoulos: a lifetime in autoimmunity. , 2010, Journal of autoimmunity.

[4]  S. Formisano,et al.  Thyroglobulin as an autoantigen: what can we learn about immunopathogenicity from the correlation of antigenic properties with protein structure? , 2004, Immunology.

[5]  J. Pers,et al.  Epigenetics and autoimmunity. , 2010, Journal of autoimmunity.

[6]  Vladimir Brusic,et al.  Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. , 2004, Cellular immunology.

[7]  H. Luthra,et al.  An HLA-DRB1*0402 derived peptide (HV3 65-79) prevents collagen-induced arthritis in HLA-DQ8 transgenic mice. , 1999, Human immunology.

[8]  I. Mackay,et al.  Clustering and commonalities among autoimmune diseases. , 2009, Journal of autoimmunity.

[9]  K. Imai,et al.  The birthday of a new syndrome: IgG4-related diseases constitute a clinical entity. , 2010, Autoimmunity reviews.

[10]  Morten Nielsen,et al.  Major histocompatibility complex class I binding predictions as a tool in epitope discovery , 2010, Immunology.

[11]  J. Pers,et al.  The international symposium on Sjögren's syndrome in Brest: the "top of the tops" at the "tip of the tips". , 2010, Autoimmunity reviews.

[12]  J. Banga,et al.  Graves’ hyperthyroidism and thyroiditis in HLA‐DRB1*0301 (DR3) transgenic mice after immunization with thyrotropin receptor DNA , 2004, Clinical and experimental immunology.

[13]  Y. Tomer,et al.  Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. , 2005, The Journal of clinical endocrinology and metabolism.

[14]  O. Lund,et al.  NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure , 2010, Immunome research.

[15]  C. David,et al.  Autoimmune thyroiditis: a model uniquely suited to probe regulatory T cell function. , 2009, Journal of autoimmunity.

[16]  Glinda S Cooper,et al.  Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. , 2009, Journal of autoimmunity.

[17]  Q. Wan,et al.  Coexpression of susceptible and resistant HLA class II transgenes in murine experimental autoimmune thyroiditis: DQ8 molecules downregulate DR3-mediated thyroiditis. , 2002, Journal of autoimmunity.

[18]  Q. Wan,et al.  HLA-DR and HLA-DQ polymorphism in human thyroglobulin-induced autoimmune thyroiditis: DR3 and DQ8 transgenic mice are susceptible. , 2002, Human immunology.

[19]  K. Beisel,et al.  Regulation of experimental autoimmune thyroiditis: Mapping of susceptibility to the I-A subregion of the mouse H-2 , 2004, Immunogenetics.

[20]  Philippa Marrack,et al.  Genetic and hormonal factors in female-biased autoimmunity. , 2010, Autoimmunity reviews.

[21]  J. Chiorini,et al.  Sjögren syndrome: advances in the pathogenesis from animal models. , 2009, Journal of autoimmunity.

[22]  Y. Kong,et al.  Influences of Iodine on the Immunogenicity of Thyroglobulin , 2009 .

[23]  P. Christadoss,et al.  Human thyroglobulin peptide p2340 induces autoimmune thyroiditis in HLA-DR3 transgenic mice. , 2005, Journal of autoimmunity.

[24]  Clemencia Pinilla,et al.  Thyroglobulin Peptides Associate In Vivo to HLA-DR in Autoimmune Thyroid Glands1 , 2008, The Journal of Immunology.

[25]  K. Yamamura,et al.  Prevention of autoimmune insulitis by expression of I–E molecules in NOD mice , 1987, Nature.

[26]  G. Schönrich,et al.  Negative and positive selection by HLA-DR3(DRw17) molecules in transgenic mice , 2004, Immunogenetics.

[27]  G. Hämmerling,et al.  HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: definitive association with HLA- DRB1*0301 (DR3) gene , 1996, The Journal of experimental medicine.

[28]  Q. Wan,et al.  H2-E transgenic class II-negative mice can distinguish self from nonself in susceptibility to heterologous thyroglobulins in autoimmune thyroiditis , 1999, Immunogenetics.

[29]  V. Brusic,et al.  Neural network-based prediction of candidate T-cell epitopes , 1998, Nature Biotechnology.

[30]  M. Shenoy,et al.  Einfαsupk transgene in B10 mice suppresses the development of myasthenia gravis , 1990, Immunogenetics.

[31]  K. Schwarz,et al.  Autoimmunity, autoinflammation and lymphoma in combined immunodeficiency (CID). , 2010, Autoimmunity reviews.

[32]  Y. Shoenfeld,et al.  Geo-epidemiology and autoimmunity. , 2010, Journal of autoimmunity.

[33]  M. Gershwin,et al.  Navigating the passage between Charybdis and Scylla: recognizing the achievements of Noel Rose. , 2009, Journal of autoimmunity.

[34]  N. Rose,et al.  Regulation of autoimmune response to mouse thyroglobulin: influence of H-2D-end genes. , 1979, Journal of immunology.

[35]  A. Rudensky,et al.  Sequence analysis of peptides bound to MHC class II molecules , 1991, Nature.

[36]  V. Brusic,et al.  Characterization of a novel H2A(-)E+ transgenic model susceptible to heterologous but not self thyroglobulin in autoimmune thyroiditis: thyroiditis transfer with Vbeta8+ T cells. , 2001, Cellular immunology.

[37]  Y. Shoenfeld,et al.  Effects of tobacco smoke on immunity, inflammation and autoimmunity. , 2010, Journal of autoimmunity.

[38]  O. Lund,et al.  MULTIPRED2: A computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles , 2010, Journal of Immunological Methods.

[39]  C. David,et al.  H2E-Derived Eα52-68 Peptide Presented by H2Ab Interferes with Clonal Deletion of Autoreactive T Cells in Autoimmune Thyroiditis1 , 2008, The Journal of Immunology.

[40]  C. Benoist,et al.  Mice lacking all conventional MHC class II genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Bombardieri,et al.  Epigenetics in autoimmune disorders: highlights of the 10th Sjögren's syndrome symposium. , 2010, Autoimmunity reviews.

[42]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[43]  Tin Wee Tan,et al.  Prediction of desmoglein-3 peptides reveals multiple shared T-cell epitopes in HLA DR4- and DR6- associated Pemphigus vulgaris , 2006, BMC Bioinformatics.

[44]  S. Buus,et al.  Identification of MHC class I H-2 Kb/Db-restricted immunogenic peptides derived from retinal proteins. , 2006, Investigative ophthalmology & visual science.

[45]  P. van Endert,et al.  HLA Class I Epitope Discovery in Type 1 Diabetes , 2006, Annals of the New York Academy of Sciences.

[46]  C. David,et al.  H2A- and H2E-Derived CD4+CD25+ Regulatory T Cells: A Potential Role in Reciprocal Inhibition by Class II Genes in Autoimmune Thyroiditis1 , 2005, The Journal of Immunology.

[47]  Y. Shoenfeld,et al.  Systemic lupus erythematosus and the SLE galaxy. , 2010, Autoimmunity reviews.

[48]  N. Rose,et al.  Autoimmune Murine Thyroiditis Relation to Histocompatibility (H-2) Type , 1971, Science.

[49]  D. Gray,et al.  Mice lacking MHC class II molecules , 1991, Cell.

[50]  J. Bach,et al.  CD8+ T lymphocytes specific for glutamic acid decarboxylase 90-98 epitope mediate diabetes in NOD SCID mouse. , 2007, Molecular immunology.

[51]  S. Pearce,et al.  The genetics of autoimmune thyroid disease. , 2002, The Journal of clinical endocrinology and metabolism.

[52]  Haiyan S. Li,et al.  Modifying effects of iodine on the immunogenicity of thyroglobulin peptides. , 2007, Journal of autoimmunity.

[53]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[54]  Q. Wan,et al.  HLA and H2 Class II Transgenic Mouse Models to Study Susceptibility and Protection in Autoimmune Thyroid Disease , 2003, Autoimmunity.

[55]  N. Rose,et al.  REGULATION OF EXPERIMENTAL AUTOIMMUNE THYROIDITIS: INFLUENCE OF NON‐H‐2 GENES , 1982, Journal of immunogenetics.

[56]  V. Brusic,et al.  A novel H2A-E+ transgenic model susceptible to human but not mouse thyroglobulin-induced autoimmune thyroiditis: identification of mouse pathogenic epitopes. , 2007, Cellular immunology.

[57]  P. A. Peterson,et al.  Transgenic HLA-DRα faithfully reconstitutes IE-controlled immune functions and induces cross-tolerance to Eα in Eα 0 mutant mice , 1989, Cell.

[58]  E. Maverakis,et al.  Light, including ultraviolet. , 2010, Journal of autoimmunity.

[59]  R. Osman,et al.  Arginine at position 74 of the HLA-DR β1 chain is associated with Graves' disease , 2004, Genes and Immunity.

[60]  Haiyan S. Li,et al.  Variable influences of iodine on the T‐cell recognition of a single thyroglobulin epitope , 2007, Immunology.

[61]  G. P. Morris,et al.  Tolerance to autoimmune thyroiditis: (CD4+)CD25+ regulatory T cells influence susceptibility but do not supersede MHC class II restriction. , 2006, Frontiers in bioscience : a journal and virtual library.

[62]  V. Taneja,et al.  HLA class II transgenic mice mimic human inflammatory diseases. , 2008, Advances in immunology.

[63]  G. Nabozny,et al.  Suppression in experimental autoimmune thyroiditis: the role of unique and shared determinants on mouse thyroglobulin in self-tolerance. , 1990, Cellular immunology.

[64]  P. Lymberi,et al.  Induction of murine thyroiditis by a non dominant Ek‐restricted peptide of human thyroglobulin , 2003, Immunology.

[65]  Athanassios Stavrakoudis,et al.  T‐cell epitopes of the La/SSB autoantigen: Prediction based on the homology modeling of HLA‐DQ2/DQ7 with the insulin‐B peptide/HLA‐DQ8 complex , 2006, J. Comput. Chem..

[66]  Morten Nielsen,et al.  Peptide binding predictions for HLA DR, DP and DQ molecules , 2010, BMC Bioinformatics.

[67]  N. Rose,et al.  Syngeneic thyroglobulin is immunogenic in good responder mice , 1981, European journal of immunology.

[68]  C. Benoist,et al.  Correcting an immune-response deficiency by creating Eα gene transgenic mice , 1985, Nature.

[69]  E. Jacobson,et al.  The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. , 2008, Journal of autoimmunity.

[70]  G. P. Morris,et al.  Naturally-existing CD4(+)CD25(+)Foxp3(+) regulatory T cells are required for tolerance to experimental autoimmune thyroiditis induced by either exogenous or endogenous autoantigen. , 2009, Journal of autoimmunity.

[71]  Pedro A Reche,et al.  Prediction of MHC-peptide binding: a systematic and comprehensive overview. , 2009, Current pharmaceutical design.

[72]  R. Osman,et al.  Tg.2098 is a major human thyroglobulin T-cell epitope. , 2010, Journal of autoimmunity.

[73]  P. Vidalain,et al.  Cloning and characterization of murine thyroglobulin cDNA. , 1997, Clinical immunology and immunopathology.

[74]  R. Osman,et al.  Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice , 2008, Proceedings of the National Academy of Sciences.

[75]  M. Gershwin,et al.  The implications of autoimmunity and pregnancy. , 2010, Journal of autoimmunity.

[76]  C. David,et al.  Erratum: Role of mouse and human class II transgenes in susceptibility to and protection against mouse autoimmune thyroiditis (Immunogenetics (1997) 46 (312-317)) , 1997 .