Mean and variance of the cardinality of particles in infinite true polyanalytic Ginibre processes via a coherent states quantization method

We discuss the mean and variance of the number ‘point-particles’ ♯DR inside a disk D R centered at the origin of the complex plane C and of radius R > 0 with respect to an infinite true polyanalytic process of index m∈Z+ by quantizing the phase space C via a set of generalized coherent states (CSs) z,m of the harmonic oscillator on L2R . By this procedure, the spectrum of the quantum observable representing the indicator function χDR ofD R (viewed as a classical observable) allows to compute the mean value of ♯DR . The variance of ♯DR is obtained as a special eigenvalue of a quantum observable involving the auto-convolution of χDR . By adopting a CSs quantization approach, we seek to identify classical observables on C, whose quantum counterparts may encode the first cumulants of ♯DR through spectral properties.

[1]  Marcel Fenzl,et al.  Precise Deviations for Disk Counting Statistics of Invariant Determinantal Processes , 2020, 2003.07776.

[2]  L. D. Abreu,et al.  Donoho-Logan Large Sieve Principles for Modulation and Polyanalytic Fock Spaces , 2018, 1808.02258.

[3]  S. Torquato Hyperuniform states of matter , 2018, Physics Reports.

[4]  N. Demni,et al.  The hyperbolic-type point process , 2017, Journal of the Mathematical Society of Japan.

[5]  Antti Haimi,et al.  A Central Limit Theorem for Fluctuations in Polyanalytic Ginibre Ensembles , 2016, 1612.07974.

[6]  João M. Pereira,et al.  The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels , 2016, 1612.00359.

[7]  N. Miyoshi,et al.  A cellular network model with Ginibre configurated base stations , 2012 .

[8]  Emilio Leonardi,et al.  Large deviations of the interference in the Ginibre network model , 2013, ArXiv.

[9]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[10]  J. Gazeau,et al.  Pisot q-coherent states quantization of the harmonic oscillator , 2012, 1207.1200.

[11]  H. Hedenmalm,et al.  The Polyanalytic Ginibre Ensembles , 2011, 1106.2975.

[12]  Z. Mouayn Coherent States Quantization for Generalized Bargmann Spaces with Formulae for Their Attached Berezin Transforms in Terms of the Laplacian on ℂN , 2011, 1101.0379.

[13]  Salvatore Torquato,et al.  Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. , 2010, Physical review letters.

[14]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[15]  Z. Mouayn Coherent state transforms attached to generalized Bargmann spaces on the complex plane , 2010, 1003.5421.

[16]  J. Gazeau Coherent states in quantum physics: an overview , 2009, Journal of Physics: Conference Series.

[17]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[18]  Chase E. Zachary,et al.  Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Chase E. Zachary,et al.  Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory , 2008, 0809.0449.

[20]  Tomoyuki Shirai,et al.  Large Deviations for the Fermion Point Process Associated with the Exponential Kernel , 2006 .

[21]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  W. Schempp,et al.  Heisenberg groups—the fundamental ingredient to describe information, its transmission and quantization , 2003 .

[23]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[24]  J. Klauder Beyond Conventional Quantization , 1999 .

[25]  Zouhaïr Mouayn,et al.  Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants , 1997 .

[26]  G. Manificat,et al.  Large charge fluctuations in classical Coulomb systems , 1993 .

[27]  C. Benson,et al.  Bounded K-spherical functions on Heisenberg groups , 1992 .

[28]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[29]  Michael E. Taylor,et al.  Noncommutative Harmonic Analysis , 1986 .

[30]  Calvin C. Moore,et al.  On the regular representation of a nonunimodular locally compact group , 1976 .

[31]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[32]  E. I. Jury,et al.  On orthogonal polynomials , 1975 .

[33]  F. Berezin General concept of quantization , 1975 .

[34]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[35]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[36]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[37]  M. B. Balk,et al.  On polyanalytic functions , 1970 .

[38]  R. P. Soni,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .

[39]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[40]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[41]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[42]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[43]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[44]  T. Shirai Ginibre-type point processes and their asymptotic behavior , 2015 .

[45]  Hans G. Feichtinger,et al.  Function Spaces of Polyanalytic Functions , 2014 .

[46]  Tomoyuki Shirai,et al.  Variance of the linear statistics of the Ginibre random point field (Proceedings of RIMS Workshop on Stochastic Analysis and Applications) , 2008 .

[47]  N. Vasilevski Poly-Fock Spaces , 2000 .

[48]  J. Klauder Quantization Without Quantization , 1995 .

[49]  A. Prudnikov,et al.  Integrals and series of special functions , 1983 .

[50]  E. Feldheim,et al.  EXPANSIONS AND INTEGRAL-TRANSFORMS FOR PRODUCTS OF LAGUERRE AND HERMITE POLYNOMIALS , 1940 .