An efficient adaptive analysis procedure for node-based smoothed point interpolation method (NS-PIM)
暂无分享,去创建一个
Xu Xu | Zhihua Zhong | Guiyong Zhang | Qian Tang | Guiyong Zhang | Z. Zhong | Q. Tang | Xu Xu
[1] Joan Antoni Sellarès,et al. Combining improvement and refinement techniques: 2D Delaunay mesh adaptation under domain changes , 2008, Appl. Math. Comput..
[2] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[3] Gui-Rong Liu,et al. An adaptive procedure based on background cells for meshless methods , 2002 .
[4] Chi King Lee,et al. On error estimation and adaptive refinement for element free Galerkin method: Part II: adaptive refinement , 2004 .
[5] K. Y. Dai,et al. Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method , 2007 .
[6] Li Xie,et al. The residual based interactive stochastic gradient algorithms for controlled moving average models , 2009, Appl. Math. Comput..
[7] K. Y. Dai,et al. A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .
[8] Ted Belytschko,et al. An error estimate in the EFG method , 1998 .
[9] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[10] Guirong Liu. Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .
[11] Guirong Liu,et al. A point interpolation meshless method based on radial basis functions , 2002 .
[12] K. Y. Dai,et al. A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .
[13] Yanjun Liu,et al. Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..
[14] Guirong Liu,et al. A point interpolation method for two-dimensional solids , 2001 .
[15] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[16] Feng Ding,et al. Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..
[17] Ted Belytschko,et al. On adaptivity and error criteria for meshfree methods , 1998 .
[18] Chi King Lee,et al. On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation , 2004 .
[19] Jinn-Liang Liu,et al. Exact a posteriori error analysis of the least squares finite element method , 2000, Appl. Math. Comput..
[20] J. Tinsley Oden,et al. Advances in adaptive computational methods in mechanics , 1998 .
[21] Oden,et al. An h-p adaptive method using clouds , 1996 .
[22] Guirong Liu,et al. Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC‐PIM) , 2008 .
[23] S. Timoshenko,et al. Theory of elasticity , 1975 .
[24] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[25] J. Shewchuk,et al. Delaunay refinement mesh generation , 1997 .
[26] Ondrej Certík,et al. Three anisotropic benchmark problems for adaptive finite element methods , 2013, Appl. Math. Comput..
[27] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[28] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[29] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[30] Guiyong Zhang,et al. An efficient adaptive analysis procedure for certified solutions with exact bounds of strain energy for elasticity problems , 2008 .
[31] J. Z. Zhu,et al. The finite element method , 1977 .