An efficient adaptive analysis procedure for node-based smoothed point interpolation method (NS-PIM)

This paper presents an efficient adaptive analysis procedure being able to operate in the framework of the node-based smoothed point interpolation method (NS-PIM). The NS-PIM uses three-node triangular cells and is very easy to be implemented, which make it an ideal candidate for adaptive analysis. In the present adaptive procedure, a new error indicator is devised for NS-PIM settings; two ways are proposed to calculate the local critical value; a simple h-type local refinement scheme is adopted and Delaunay technology is used for regenerating optimal new mesh. A number of typical numerical examples involving stress concentration and solution singularities have been tested. The results demonstrate that the present procedure achieves much higher convergence rate results compared to the uniform refinement, and can obtain upper bound solution in strain energy.

[1]  Joan Antoni Sellarès,et al.  Combining improvement and refinement techniques: 2D Delaunay mesh adaptation under domain changes , 2008, Appl. Math. Comput..

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[3]  Gui-Rong Liu,et al.  An adaptive procedure based on background cells for meshless methods , 2002 .

[4]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method: Part II: adaptive refinement , 2004 .

[5]  K. Y. Dai,et al.  Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method , 2007 .

[6]  Li Xie,et al.  The residual based interactive stochastic gradient algorithms for controlled moving average models , 2009, Appl. Math. Comput..

[7]  K. Y. Dai,et al.  A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .

[8]  Ted Belytschko,et al.  An error estimate in the EFG method , 1998 .

[9]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[10]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[11]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[12]  K. Y. Dai,et al.  A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .

[13]  Yanjun Liu,et al.  Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..

[14]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[15]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[16]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[17]  Ted Belytschko,et al.  On adaptivity and error criteria for meshfree methods , 1998 .

[18]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation , 2004 .

[19]  Jinn-Liang Liu,et al.  Exact a posteriori error analysis of the least squares finite element method , 2000, Appl. Math. Comput..

[20]  J. Tinsley Oden,et al.  Advances in adaptive computational methods in mechanics , 1998 .

[21]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[22]  Guirong Liu,et al.  Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC‐PIM) , 2008 .

[23]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[24]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[25]  J. Shewchuk,et al.  Delaunay refinement mesh generation , 1997 .

[26]  Ondrej Certík,et al.  Three anisotropic benchmark problems for adaptive finite element methods , 2013, Appl. Math. Comput..

[27]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[28]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[29]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[30]  Guiyong Zhang,et al.  An efficient adaptive analysis procedure for certified solutions with exact bounds of strain energy for elasticity problems , 2008 .

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .