Discussion on the paper ‘Statistical contributions to bioinformatics: Design, modelling, structure learning and integration’ by Jeffrey S. Morris and Veerabhadran Baladandayuthapani

Bioinformatics is an important research area for statisticians. This discussion provides some additional topics to the paper, namely on statistical contributions to detect differential expressed genes, for protein structure prediction, and for the analysis of highly correlated features in Glycomics datasets.

[1]  Kanti V. Mardia,et al.  Bayesian Methods in Structural Bioinformatics , 2012 .

[2]  R. Spang,et al.  State-of-the art data normalization methods improve NMR-based metabolomic analysis , 2011, Metabolomics.

[3]  Jesper Ferkinghoff-Borg,et al.  A generative, probabilistic model of local protein structure , 2008, Proceedings of the National Academy of Sciences.

[4]  Jeanine J Houwing-Duistermaat,et al.  Secondary phenotype analysis in ascertained family designs: application to the Leiden longevity study , 2016, Statistics in medicine.

[5]  S Banu Ozkan,et al.  The protein folding problem: when will it be solved? , 2007, Current opinion in structural biology.

[6]  Manfred Wuhrer,et al.  Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health* , 2016, Molecular & Cellular Proteomics.

[7]  K. Pearson Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs , 1897, Proceedings of the Royal Society of London.

[8]  Fabian J. Theis,et al.  Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data , 2011, BMC Systems Biology.

[9]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[10]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[11]  John D. Storey A direct approach to false discovery rates , 2002 .

[12]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[13]  Paola Sebastiani,et al.  Genome-Wide Association Studies (GWAS) , 2019, Definitions.

[14]  Perttu Salo,et al.  On the Combination of Omics Data for Prediction of Binary Outcomes , 2016, 1610.04465.

[15]  Robert J. Moon,et al.  Transforming Glycoscience: A Roadmap for the Future , 2012 .

[16]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[17]  P. Kraft,et al.  Genome‐wide association scans for secondary traits using case‐control samples , 2009, Genetic epidemiology.

[18]  Johan Trygg,et al.  O2‐PLS, a two‐block (X–Y) latent variable regression (LVR) method with an integral OSC filter , 2003 .

[19]  Yudi Pawitan,et al.  Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. , 2007, Nucleic acids research.

[20]  Christodoulos A. Floudas,et al.  Advances in protein structure prediction and de novo protein design : A review , 2006 .

[21]  Yudi Pawitan,et al.  Fold-Change Estimation of Differentially Expressed Genes using Mixture Mixed-Model , 2005, Statistical applications in genetics and molecular biology.

[22]  Yudi Pawitan,et al.  Multidimensional local false discovery rate for microarray studies , 2006, Bioinform..

[23]  Gerald W. Hart,et al.  Glycomics Hits the Big Time , 2010, Cell.

[24]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[25]  Jeanine J. Houwing-Duistermaat,et al.  Evaluation of O2PLS in Omics data integration , 2016, BMC Bioinformatics.