Flow views and infinite interval exchange transformations for recognizable substitutions

A flow view is the graph of a measurable conjugacy Φ between a substitution or S-adic subshift (Σ, σ, μ) and an exchange of infinitely many intervals in ([0, 1],F,m). The natural refining sequence of partitions of Σ is transferred to ([0, 1],m) using a canonical addressing scheme, a fixed dual substitution S∗, and a shift-invariant probability measure μ. On the flow view, τ is shown horizontally at a height of Φ(τ ). The IIET F is well approximated by exchanges of finitely many intervals, making numeric and graphic methods possible. The graphs of Fs show forms of self-similarity, a special case of which is proved. The spectral type of Φ ∈ L(Σ, μ), is of particular interest. As an example of utility, some spectral results for constant-length substitutions are included.

[1]  A. Katok,et al.  Chapter 11 Spectral properties and combinatorial constructions in ergodic theory , 2006 .

[2]  Lorenzo Sadun,et al.  When size matters: subshifts and their related tiling spaces , 2003, Ergodic Theory and Dynamical Systems.

[3]  Valérie Berthé,et al.  On the Pisot Substitution Conjecture , 2015 .

[4]  REEM YASSAWI,et al.  Recognizability for sequences of morphisms , 2017, Ergodic Theory and Dynamical Systems.

[5]  W. Hooper,et al.  The invariant measures of some infinite interval exchange maps , 2010, 1005.1902.

[6]  Michael Baake,et al.  Geometric properties of a binary non-Pisot inflation and absence of absolutely continuous diffraction , 2017, Studia Mathematica.

[7]  Bernard Host,et al.  Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.

[8]  C. Caramanis What is ergodic theory , 1963 .

[9]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[10]  S. Bezuglyi,et al.  Bratteli diagrams: structure, measures, dynamics , 2015, 1503.03360.

[11]  Philippe Narbel,et al.  Infinite interval exchange transformations from shifts , 2015, Ergodic Theory and Dynamical Systems.

[12]  Alejandro Maass,et al.  Finite-rank Bratteli–Vershik diagrams are expansive , 2008, Ergodic Theory and Dynamical Systems.

[13]  D. Ornstein,et al.  Cutting and stacking, interval exchanges and geometric models , 1985 .

[14]  Pierre Arnoux,et al.  THE SCENERY FLOW FOR GEOMETRIC STRUCTURES ON THE TORUS: THE LINEAR SETTING , 2001 .

[15]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[16]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[17]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[18]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[19]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[20]  Valérie Berthé,et al.  Tilings associated with beta-numeration and substitutions. , 2005 .