Alzheimer’s Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation

[1]  Steve Lianoglou,et al.  TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge , 2019, Neuron.

[2]  J. Lambert,et al.  Genetics of Alzheimer’s disease: where we are, and where we are going , 2019, Current Opinion in Neurobiology.

[3]  Brian J Cummings,et al.  Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo , 2019, Neuron.

[4]  Anastasia G. Efthymiou,et al.  Integration of Alzheimer’s disease genetics and myeloid genomics reveals novel disease risk mechanisms , 2019, bioRxiv.

[5]  Anastasia G. Efthymiou,et al.  Integration of Alzheimer’s disease genetics and myeloid genomics reveals novel disease risk mechanisms , 2019, bioRxiv.

[6]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[7]  J. Morris,et al.  A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain , 2019, Alzheimer's Research & Therapy.

[8]  Genetic,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[9]  Dheeraj Malhotra,et al.  Altered human oligodendrocyte heterogeneity in multiple sclerosis , 2019, Nature.

[10]  Timothy J. Hohman,et al.  Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk , 2019, Nature Genetics.

[11]  Maxim N. Artyomov,et al.  Transcriptome Analysis Reveals Nonfoamy Rather Than Foamy Plaque Macrophages Are Proinflammatory in Atherosclerotic Murine Models , 2018, Circulation research.

[12]  Cyril Pernet,et al.  Do 2-year changes in superior frontal gyrus and global brain atrophy affect cognition? , 2018, Alzheimer's & dementia.

[13]  A. Goate,et al.  Paired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer's disease , 2018, bioRxiv.

[14]  I. Amit,et al.  Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration , 2018, Cell.

[15]  Dennis Wolf,et al.  Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis , 2018, Circulation research.

[16]  Charles C. White,et al.  A transcriptomic atlas of aged human microglia , 2018, Nature Communications.

[17]  J. Hanson,et al.  Microglia in Alzheimer’s disease , 2018, The Journal of cell biology.

[18]  Melanie A. Huntley,et al.  Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models. , 2018, Cell reports.

[19]  R. Marioni,et al.  GWAS on family history of Alzheimer’s disease , 2018, bioRxiv.

[20]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[21]  Nick C Fox,et al.  Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease , 2017, Nature Genetics.

[22]  R. Leite,et al.  Transcriptomic analysis of purified human cortical microglia reveals age-associated changes , 2017, Nature Neuroscience.

[23]  Baptiste N. Jaeger,et al.  An environment-dependent transcriptional network specifies human microglia identity , 2017, Science.

[24]  K. Hao,et al.  A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease , 2017, Nature Neuroscience.

[25]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[26]  A. Genovesio,et al.  Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface , 2017, Cell Discovery.

[27]  Chiung-Chih Chang,et al.  Hippocampal Amyloid Burden with Downstream Fusiform Gyrus Atrophy Correlate with Face Matching Task Scores in Early Stage Alzheimer’s Disease , 2016, Front. Aging Neurosci..

[28]  Benjamin E. L. Lauffer,et al.  Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses , 2016, Nature Communications.

[29]  E. Chang,et al.  Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse , 2016, Neuron.

[30]  S. Grossi,et al.  Mutation Update of ARSA and PSAP Genes Causing Metachromatic Leukodystrophy , 2016, Human mutation.

[31]  Tom Michoel,et al.  Microglial brain region-dependent diversity and selective regional sensitivities to ageing , 2015, Nature Neuroscience.

[32]  Li Shen,et al.  GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP. , 2015, Brain : a journal of neurology.

[33]  H. Shill,et al.  Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program , 2015, Neuropathology : official journal of the Japanese Society of Neuropathology.

[34]  I. Amit,et al.  Host microbiota constantly control maturation and function of microglia in the CNS , 2015, Nature Neuroscience.

[35]  Jeremy A. Miller,et al.  Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis , 2015, Acta Neuropathologica Communications.

[36]  M. Colonna,et al.  TREM2 sustains microglial expansion during aging and response to demyelination. , 2015, The Journal of clinical investigation.

[37]  D. Holtzman,et al.  TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model , 2015, Cell.

[38]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[39]  E. Hol,et al.  Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction , 2014, Neurobiology of Aging.

[40]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[41]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[42]  D. G. Clark,et al.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease , 2011, Nature Genetics.

[43]  H. Braak,et al.  Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease , 2009, Acta Neuropathologica.

[44]  B. Dubois,et al.  Functions of the left superior frontal gyrus in humans: a lesion study. , 2006, Brain : a journal of neurology.

[45]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1991, Neurology.

[46]  Hans-Ulrich Klein,et al.  A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research , 2018, Scientific Data.

[47]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[48]  Ulrich Sure,et al.  Edinburgh Research Explorer Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution , 2022 .