A. N. Kolmogorov - the founder of the theory of reversible Markov processes
暂无分享,去创建一个
[1] Hans Föllmer,et al. An entropy approach to the time reversal of diffusion processes , 1985 .
[2] Donald F. Towsley,et al. Product Form and Local Balance in Queueing Networks , 1977, JACM.
[3] Benjamin Melamed,et al. On the reversibility of queueing networks , 1982 .
[4] U. Haussmann. On the drift of a reversed diffusion , 1985 .
[5] U. Haussmann,et al. Time reversal of diffusion processes , 1985 .
[6] E. Reich. Note on Queues in Tandem , 1963 .
[7] F. Spitzer. Interaction of Markov processes , 1970 .
[8] E. Pardoux,et al. Time-reversal of diffusion processes and non-linear smoothing , 1985 .
[9] R. R. P. Jackson,et al. Queueing Systems with Phase Type Service , 1954 .
[10] D. Stroock,et al. Simulated annealing via Sobolev inequalities , 1988 .
[11] R. Glauber. Time‐Dependent Statistics of the Ising Model , 1963 .
[12] P. Burke. The Output of a Queuing System , 1956 .
[13] R. Lang. Unendlich-dimensionale Wienerprozesse mit Wechselwirkung , 1977 .
[14] D. Stroock,et al. Applications of the stochastic Ising model to the Gibbs states , 1976 .
[15] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[16] Jean-Pierre Fouque,et al. Hydrodynamical Limit for the Asymmetric Simple Exclusion Process , 1987 .
[17] V. V. Anshelevich,et al. Symmetric random walks in random environments , 1982 .
[18] Frank Kelly,et al. Reversibility and Stochastic Networks , 1979 .
[19] A. N. Rybko,et al. On Jackson Networks on Denumerable Graphs , 1989 .
[20] Austin J. Lemoine. ON SOJOURN TIME IN JACKSON NETWORKS OF QUEUES , 1987 .
[21] C. Kipnis,et al. DERIVATION OF THE HYDRODYNAMICAL EQUATION FOR THE ZERO-RANGE INTERACTION PROCESS , 1984 .
[22] J. Fritz. Stationary measures of stochastic gradient systems, infinite lattice models , 1982 .
[23] P. Ferrari,et al. An invariance principle for reversible Markov processes. Applications to random motions in random environments , 1989 .
[24] H. Georgii. Canonical Gibbs Measures , 1979 .
[25] S. Varadhan,et al. Ohrnstein—uhlenbeck process in a random potential , 1985 .
[26] D. Stroock,et al. Diffusions on an infinite dimensional torus , 1981 .
[27] Brian D. O. Anderson,et al. Reverse time diffusions , 1985 .
[28] D. Stroock,et al. L2 theory for the stochastic Ising model , 1976 .
[29] B. Tóth. Persistent random walks in random environment , 1986 .
[30] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[32] H. Föllmer,et al. Time reversal of infinite-dimensional diffusions , 1986 .
[33] Frank Kelly,et al. Networks of queues with customers of different types , 1975, Journal of Applied Probability.
[34] K. Meyer. The Output of a Queueing System , 1981 .
[35] A. Kolmogoroff. Zur Theorie der Markoffschen Ketten , 1936 .
[36] R. Arratia. The Motion of a Tagged Particle in the Simple Symmetric Exclusion System on $Z$ , 1983 .
[37] A. Barbour. Networks of queues and the method of stages , 1976, Advances in Applied Probability.
[38] C. Kipnis. Central Limit Theorems for Infinite Series of Queues and Applications to Simple Exclusion , 1986 .
[39] Daniel W. Stroock,et al. In one and two dimensions, every stationary measure for a stochastic Ising Model is a Gibbs state , 1977 .
[40] On the stationary measures of anharmonic systems in the presence of a small thermal noise , 1986 .
[41] E. Reich. Waiting Times When Queues are in Tandem , 1957 .
[42] David Ruelle,et al. Observables at infinity and states with short range correlations in statistical mechanics , 1969 .
[43] R. Dobrushin. The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .
[44] A. Shimizu,et al. Infinite dimensional stochastic differential equations and their applications , 1980 .
[45] F. Kelly,et al. Networks of queues , 1976, Advances in Applied Probability.
[46] B. Gidas. Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .
[47] David A. Castañón,et al. Reverse-time diffusion processes , 1982, IEEE Trans. Inf. Theory.
[48] E. Andjel. Invariant Measures for the Zero Range Process , 1982 .
[49] B. Melamed. Characterizations of Poisson traffic streams in Jackson queueing networks , 1979, Advances in Applied Probability.
[50] R. Holley. Pressure and Helmholtz free energy in a dynamic model of a lattice gas , 1972 .
[51] D. Kendall. Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain , 1953 .
[52] G. Royer. Processus de diffusion associe a certains modeles d'Ising a spins continus , 1979 .
[53] M. Nagasawa. Time Reversions of Markov Processes , 1964, Nagoya Mathematical Journal.
[54] A. Kolmogoroff,et al. Zur Umkehrbarkeit der statistischen Naturgesetze , 1937 .
[55] Infinite lattice systems of interacting diffusion processes, existence and regularity properties , 1982 .
[56] P. Hohenberg,et al. Theory of Dynamic Critical Phenomena , 1977 .
[57] G. Fayolle,et al. Sojourn Times in a Tandem Queue with Overtaking: Reduction to a Boundary Value Problem , 1986 .
[58] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[59] B. Anderson. Reverse-time diffusion equation models , 1982 .
[60] L. Onsager. Reciprocal Relations in Irreversible Processes. II. , 1931 .
[61] R. Holley,et al. Free energy in a Markovian model of a lattice spin system , 1971 .