Scenarios towards limiting global mean temperature increase below 1.5 °C

The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.Scenarios that constrain end-of-century radiative forcing to 1.9 W m–2, and thus global mean temperature increases to below 1.5 °C, are explored. Effective scenarios reduce energy use, deploy CO2 removal measures, and shift to non-emitting energy sources.

[1]  F. Creutzig,et al.  The underestimated potential of solar energy to mitigate climate change , 2017, Nature Energy.

[2]  T. Lenton CHAPTER 3:The Global Potential for Carbon Dioxide Removal , 2014 .

[3]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[4]  Howard J. Herzog,et al.  Carbon Dioxide Capture and Storage , 2009 .

[5]  Us Nas,et al.  Climate intervention: Carbon dioxide removal and reliable sequestration , 2017 .

[6]  V. Brovkin,et al.  Estimating the near-surface permafrost-carbon feedback on global warming , 2012 .

[7]  E. Fischer,et al.  A scientific critique of the two-degree climate change target , 2016 .

[8]  Joeri Rogelj,et al.  Science and policy characteristics of the Paris Agreement temperature goal , 2016 .

[9]  K. Riahi,et al.  The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century , 2006 .

[10]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[11]  K. Riahi,et al.  Managing Climate Risk , 2001, Science.

[12]  P. Kyle,et al.  Land-use futures in the shared socio-economic pathways , 2017 .

[13]  Pierre Friedlingstein,et al.  C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6 , 2016 .

[14]  N. Nakicenovic,et al.  Biophysical and economic limits to negative CO2 emissions , 2016 .

[15]  G. Luderer,et al.  Energy system transformations for limiting end-of-century warming to below 1.5 °C , 2015 .

[16]  Page Kyle,et al.  Trade-offs of different land and bioenergy policies on the path to achieving climate targets , 2014, Climatic Change.

[17]  Duncan McLaren,et al.  A comparative global assessment of potential negative emissions technologies , 2012 .

[18]  G. Peters,et al.  Catalysing a political shift from low to negative carbon , 2017 .

[19]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .

[20]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[21]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[22]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[23]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[24]  E. Fischer,et al.  Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C , 2015 .

[25]  Valentina Bosetti,et al.  The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways , 2016 .

[26]  Bas Eickhout,et al.  Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs , 2007 .

[27]  Mogens Henze,et al.  Correcting a fundamental error in greenhouse gas accounting related to bioenergy , 2012, Energy Policy.

[28]  Phil Williamson,et al.  Emissions reduction: Scrutinize CO2 removal methods , 2016, Nature.

[29]  R. Knutti,et al.  Implications of potentially lower climate sensitivity on climate projections and policy , 2014 .

[30]  E. Schmid,et al.  Climate change mitigation through livestock system transitions , 2014, Proceedings of the National Academy of Sciences.

[31]  M. Kainuma,et al.  SSP3: AIM implementation of Shared Socioeconomic Pathways , 2017 .

[32]  P. Forster,et al.  A real-time Global Warming Index , 2017, Scientific Reports.

[33]  Keywan Riahi,et al.  Differences between carbon budget estimates unravelled , 2016 .

[34]  Keywan Riahi,et al.  A new scenario framework for Climate Change Research: scenario matrix architecture , 2014, Climatic Change.

[35]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared climate policy assumptions , 2014, Climatic Change.

[36]  Andreas Oschlies,et al.  Fossil fuels in a trillion tonne world , 2015 .

[37]  K. Calvin,et al.  Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century , 2017 .

[38]  C. Field,et al.  Rightsizing carbon dioxide removal , 2017, Science.

[39]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[40]  C. Müller,et al.  Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm , 2017 .

[41]  T. Lenton The Global Potential for Carbon Dioxide Removal , 2014 .

[42]  Michael Obersteiner,et al.  Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? , 2013 .

[43]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[44]  F. Piontek,et al.  The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework , 2013, Proceedings of the National Academy of Sciences.

[45]  Kristian Lindgren,et al.  Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere , 2006 .

[46]  Nils Markusson,et al.  Last chance for carbon capture and storage , 2013 .

[47]  R. Knutti,et al.  Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings , 2015 .

[48]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[49]  Ken Caldeira,et al.  Maximum warming occurs about one decade after a carbon dioxide emission , 2014 .

[50]  Michael Obersteiner,et al.  Pathways for balancing CO2 emissions and sinks , 2017, Nature Communications.

[51]  George C. Hurtt,et al.  The Land Use Model Intercomparison Project (LUMIP): Rationale and experimental design , 2016 .

[52]  Jessica Strefler,et al.  Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios , 2015 .

[53]  H. Lotze-Campen,et al.  Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production , 2010 .

[54]  Corinne Le Quéré,et al.  Betting on negative emissions , 2014 .

[55]  Dieter Gerten,et al.  Trade‐offs between land and water requirements for large‐scale bioenergy production , 2016 .

[56]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[57]  C. Tebaldi,et al.  What would it take to achieve the Paris temperature targets? , 2016 .

[58]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[59]  D. Vuuren,et al.  Signal detection in global mean temperatures after "Paris": an uncertainty and sensitivity analysis , 2017 .

[60]  M. Strubegger,et al.  The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century , 2017 .

[61]  Florian Kraxner,et al.  BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues , 2016 .

[62]  Charlie Wilson,et al.  Diagnostic indicators for integrated assessment models of climate policy , 2015 .

[63]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[64]  L. Clarke,et al.  Assessing Transformation Pathways , 2014 .

[65]  Richard S. J. Tol,et al.  Counting only the hits? The risk of underestimating the costs of stringent climate policy , 2010 .

[66]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[67]  O. Hoegh‐Guldberg,et al.  Limiting global warming to 2 degrees Celsius is unlikely to save most coral reefs , 2013 .

[68]  M. Strubegger,et al.  Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives , 2017 .

[69]  Brian C. O'Neill,et al.  Sensitivity of regional climate to global temperature and forcing , 2015 .

[70]  N. H. Ravindranath,et al.  Bioenergy and climate change mitigation: an assessment , 2015 .

[71]  N. H. Ravindranath,et al.  How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? , 2013, Global change biology.

[72]  N. Nakicenovic,et al.  Issues related to mitigation in the long-term context , 2007 .

[73]  Tomoko Hasegawa,et al.  Emission pathways to achieve 2.0°C and 1.5°C climate targets , 2017 .

[74]  K. Riahi,et al.  The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century , 2017 .

[75]  P. Kyle,et al.  The SSP4: A world of deepening inequality , 2017 .

[76]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[77]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[78]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[79]  Benjamin Leon Bodirsky,et al.  Land-use protection for climate change mitigation , 2014 .

[80]  R. Pachauri,et al.  IPCC, Climate Change : Synthesis Report. , 2016 .

[81]  South Africa,et al.  Climate change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers , 2014 .

[82]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways , 2013, Climatic Change.

[83]  Niclas Mattsson,et al.  Meeting global temperature targets—the role of bioenergy with carbon capture and storage , 2013 .