Examples For Different Sobrieties In Fixed-Basis Topology

In a previous chapter [21], the authors introduced a new approach to describing L-topological spaces using categorical constructs called fuzzy frames. This approach not only gives new decriptions of previously known types of sober spaces, but it also leads naturally to a new type of sober spaces not previously documented in the literature.

[1]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .

[2]  Stephen E. Rodabaugh,et al.  Separation Axioms: Representation Theorems, Compactness, and Compactifications , 1999 .

[3]  T. Gantner,et al.  COMPACTNESS IN FUZZY TOPOLOGICAL SPACES , 1978 .

[4]  Ulrich Höhle,et al.  Fuzzy topologies and topological space objects in a topos , 1986 .

[5]  Rudolf-E. Hoffmann,et al.  Sobrification of partially ordered sets , 1979 .

[6]  A NOTE ON RECONSTRUCTION OF SPACES AND MAPS FROM LATTICE DATA , 2001 .

[7]  Liu Ying-Ming,et al.  Fuzzy topology. II. Product and quotient spaces , 1980 .

[8]  Rudolf-E. Hoffmann Irreducible filters and sober spaces , 1977 .

[9]  Rudolf-E. Hoffmann,et al.  On the sobrification remainder $^{s}X-X$. , 1979 .

[10]  Stephen E. Rodabaugh,et al.  Lattice-Valued Frames, Functor Categories, And Classes Of Sober Spaces , 2003 .

[11]  W. Kotzé Lifting Of Sobriety Concepts With Particular Reference To (L, M)-Topological Spaces , 2003 .

[12]  Wesley Kotzé SOBRIETY AND SEMI-SOBRIETY OF L-TOPOLOGICAL SPACES , 2001 .

[13]  U. Höhle,et al.  Weakening The Requirement That L Be A Complete Chain , 2003 .

[14]  Stephen E. Rodabaugh,et al.  Applications of localic separation axioms, compactness axioms, representations, and compactifications to poslat topological spaces , 1995 .

[15]  Stephen E. Rodabaugh,et al.  Lowen, para-Lowen, and α-level functors and fuzzy topologies on the crisp real line , 1988 .

[16]  U. Höhle,et al.  Applications of category theory to fuzzy subsets , 1992 .

[17]  Stephen E. Rodabaugh,et al.  Dynamic topologies and their applications to crisp topologies, fuzzifications of crisp topologies, and fuzzy topologies on the crisp real line , 1988 .

[18]  R. Lowen Fuzzy topological spaces and fuzzy compactness , 1976 .

[19]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[20]  Stephen E. Rodabaugh,et al.  Categorical Frameworks for Stone Representation Theories , 1992 .

[21]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[22]  Tomasz Kubiak,et al.  Separation Axioms: Extension of Mappings And Embedding of Spaces , 1999 .

[23]  U. Höhle Many Valued Topology and its Applications , 2001 .

[24]  W. Kotzé Lattice Morphisms, Sobriety, and Urysohn Lemmas , 1992 .

[25]  Tomasz Kubiak,et al.  The Topological Modification of the L-fuzzy Unit Interval , 1992 .

[26]  B. Hutton Normality in fuzzy topological spaces , 1975 .

[27]  ALES PULTR,et al.  Separation axioms and frame representation of some topological facts , 1994, Appl. Categorical Struct..

[28]  Stephen E. Rodabaugh,et al.  Fuzzy Real Lines And Dual Real Lines As Poslat Topological, Uniform, And Metric Ordered Semirings With Unity , 1999 .